Matches in SemOpenAlex for { <https://semopenalex.org/work/W3114094987> ?p ?o ?g. }
- W3114094987 abstract "Abstract Many everyday tasks share high-level sensory goals but differ in the movements used to accomplish them. One example of this is musical pitch regulation, where the same notes can be produced using the vocal system or a musical instrument controlled by the hands. Cello playing has previously been shown to rely on brain structures within the singing network for performance of single notes, except in areas related to primary motor control, suggesting that the brain networks for auditory feedback processing and sensorimotor integration may be shared (Segado et al. 2018). However, research has shown that singers and cellists alike can continue singing/playing in tune even in the absence of auditory feedback (Chen et al. 2013, Kleber et al. 2013), so different paradigms are required to test feedback monitoring and control mechanisms. In singing, auditory pitch feedback perturbation paradigms have been used to show that singers engage a network of brain regions including anterior cingulate cortex (ACC), anterior insula (aINS), and intraparietal sulcus (IPS) when compensating for altered pitch feedback, and posterior superior temporal gyrus (pSTG) and supramarginal gyrus (SMG) when ignoring it (Zarate et al. 2005, 2008). To determine whether the brain networks for cello playing and singing directly overlap in these sensory-motor integration areas, in the present study expert cellists were asked to compensate for or ignore introduced pitch perturbations when singing/playing during fMRI scanning. We found that cellists were able to sing/play target tones, and compensate for and ignore introduced feedback perturbations equally well. Brain activity overlapped for singing and playing in IPS and SMG when compensating, and pSTG and dPMC when ignoring; differences between singing/playing across all three conditions were most prominent in M1, centered on the relevant motor effectors (hand, larynx). These findings support the hypothesis that pitch regulation during cello playing relies on structures within the singing network and suggests that differences arise primarily at the level of forward motor control. Highlights Expert cellists were asked to compensate for or ignore introduced pitch perturbations when singing/playing during fMRI scanning. Cellists were able to sing/play target tones, and compensate for and ignore introduced feedback perturbations equally well. Brain activity overlapped for singing and playing in IPS and SMG when compensating, and pSTG and dPMC when ignoring. Differences between singing/playing across were most prominent in M1, centered around the relevant motor effectors (hand, larynx) Findings support the hypothesis that pitch regulation during cello playing relies on structures within the singing network with differences arising primarily at the level of forward motor control" @default.
- W3114094987 created "2021-01-05" @default.
- W3114094987 creator A5023790293 @default.
- W3114094987 creator A5052205954 @default.
- W3114094987 creator A5064996737 @default.
- W3114094987 date "2020-12-24" @default.
- W3114094987 modified "2023-09-23" @default.
- W3114094987 title "Effector-independent brain network for auditory-motor integration: fMRI evidence from singing and cello playing" @default.
- W3114094987 cites W1433525732 @default.
- W3114094987 cites W1523828822 @default.
- W3114094987 cites W1965859210 @default.
- W3114094987 cites W1974421744 @default.
- W3114094987 cites W1978339758 @default.
- W3114094987 cites W1979445218 @default.
- W3114094987 cites W1981578159 @default.
- W3114094987 cites W1987060231 @default.
- W3114094987 cites W1988557458 @default.
- W3114094987 cites W1990400764 @default.
- W3114094987 cites W1996320065 @default.
- W3114094987 cites W2011934537 @default.
- W3114094987 cites W2013189479 @default.
- W3114094987 cites W2017095787 @default.
- W3114094987 cites W2021548032 @default.
- W3114094987 cites W2026182455 @default.
- W3114094987 cites W2032209323 @default.
- W3114094987 cites W2037204738 @default.
- W3114094987 cites W2044657048 @default.
- W3114094987 cites W2048561014 @default.
- W3114094987 cites W2049547708 @default.
- W3114094987 cites W2050427299 @default.
- W3114094987 cites W2050813163 @default.
- W3114094987 cites W2058542017 @default.
- W3114094987 cites W2059909508 @default.
- W3114094987 cites W2064855890 @default.
- W3114094987 cites W2074145708 @default.
- W3114094987 cites W2075716941 @default.
- W3114094987 cites W2076439428 @default.
- W3114094987 cites W2079641058 @default.
- W3114094987 cites W2081131754 @default.
- W3114094987 cites W2083383135 @default.
- W3114094987 cites W2091587926 @default.
- W3114094987 cites W2093883650 @default.
- W3114094987 cites W2098406191 @default.
- W3114094987 cites W2098729076 @default.
- W3114094987 cites W2100457022 @default.
- W3114094987 cites W2125590497 @default.
- W3114094987 cites W2127783696 @default.
- W3114094987 cites W2130781445 @default.
- W3114094987 cites W2132344070 @default.
- W3114094987 cites W2140139856 @default.
- W3114094987 cites W2147682570 @default.
- W3114094987 cites W2152017481 @default.
- W3114094987 cites W2152090685 @default.
- W3114094987 cites W2153173382 @default.
- W3114094987 cites W2158017113 @default.
- W3114094987 cites W2166110255 @default.
- W3114094987 cites W2171222168 @default.
- W3114094987 cites W2559612540 @default.
- W3114094987 cites W2580469007 @default.
- W3114094987 cites W2600513544 @default.
- W3114094987 cites W2792771708 @default.
- W3114094987 cites W2807913270 @default.
- W3114094987 cites W2887105364 @default.
- W3114094987 cites W2911482077 @default.
- W3114094987 cites W2949262529 @default.
- W3114094987 cites W2977883299 @default.
- W3114094987 doi "https://doi.org/10.1101/2020.12.24.423508" @default.
- W3114094987 hasPublicationYear "2020" @default.
- W3114094987 type Work @default.
- W3114094987 sameAs 3114094987 @default.
- W3114094987 citedByCount "0" @default.
- W3114094987 crossrefType "posted-content" @default.
- W3114094987 hasAuthorship W3114094987A5023790293 @default.
- W3114094987 hasAuthorship W3114094987A5052205954 @default.
- W3114094987 hasAuthorship W3114094987A5064996737 @default.
- W3114094987 hasBestOaLocation W31140949871 @default.
- W3114094987 hasConcept C124086623 @default.
- W3114094987 hasConcept C142362112 @default.
- W3114094987 hasConcept C149279245 @default.
- W3114094987 hasConcept C15744967 @default.
- W3114094987 hasConcept C162324750 @default.
- W3114094987 hasConcept C169760540 @default.
- W3114094987 hasConcept C180747234 @default.
- W3114094987 hasConcept C187736073 @default.
- W3114094987 hasConcept C2776793567 @default.
- W3114094987 hasConcept C2777497123 @default.
- W3114094987 hasConcept C2778233910 @default.
- W3114094987 hasConcept C2779226451 @default.
- W3114094987 hasConcept C2779864741 @default.
- W3114094987 hasConcept C2781300654 @default.
- W3114094987 hasConcept C44819458 @default.
- W3114094987 hasConcept C46312422 @default.
- W3114094987 hasConcept C52119013 @default.
- W3114094987 hasConceptScore W3114094987C124086623 @default.
- W3114094987 hasConceptScore W3114094987C142362112 @default.
- W3114094987 hasConceptScore W3114094987C149279245 @default.
- W3114094987 hasConceptScore W3114094987C15744967 @default.
- W3114094987 hasConceptScore W3114094987C162324750 @default.
- W3114094987 hasConceptScore W3114094987C169760540 @default.
- W3114094987 hasConceptScore W3114094987C180747234 @default.