Matches in SemOpenAlex for { <https://semopenalex.org/work/W3114157713> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W3114157713 abstract "Recently, convolutional neural networks (CNNs) achieved remarkable success in various fields, especially computer vision and image processing. However, it is not known what type of CNN architecture is the best fit for the detection or classification of communication signals. In this work, we compare the three of CNN architecture in a burst signal detection task. The three CNN architectures are compared to their detection performance and computational complexity. The 9-layer CNN is shown to achieve a similar performance of 12-layer CNN on overall environments. The performance of the 7-layer CNN model is worse than that of the other two types of CNN architectures, except in terms of the computational complexity at low SNR." @default.
- W3114157713 created "2021-01-05" @default.
- W3114157713 creator A5002785562 @default.
- W3114157713 creator A5014061593 @default.
- W3114157713 creator A5086168187 @default.
- W3114157713 date "2020-10-21" @default.
- W3114157713 modified "2023-09-24" @default.
- W3114157713 title "Comparison of CNN Architectures using RP Algorithm for Burst Signal Detection" @default.
- W3114157713 cites W2107202787 @default.
- W3114157713 cites W2112796928 @default.
- W3114157713 cites W2117371822 @default.
- W3114157713 cites W2163121240 @default.
- W3114157713 cites W2193895645 @default.
- W3114157713 cites W2239136474 @default.
- W3114157713 cites W2899824937 @default.
- W3114157713 cites W2908993293 @default.
- W3114157713 cites W2916238263 @default.
- W3114157713 cites W2917701288 @default.
- W3114157713 cites W2944313727 @default.
- W3114157713 cites W2944891925 @default.
- W3114157713 cites W2966910701 @default.
- W3114157713 cites W3011425208 @default.
- W3114157713 cites W3104028856 @default.
- W3114157713 doi "https://doi.org/10.1109/ictc49870.2020.9289320" @default.
- W3114157713 hasPublicationYear "2020" @default.
- W3114157713 type Work @default.
- W3114157713 sameAs 3114157713 @default.
- W3114157713 citedByCount "1" @default.
- W3114157713 countsByYear W31141577132023 @default.
- W3114157713 crossrefType "proceedings-article" @default.
- W3114157713 hasAuthorship W3114157713A5002785562 @default.
- W3114157713 hasAuthorship W3114157713A5014061593 @default.
- W3114157713 hasAuthorship W3114157713A5086168187 @default.
- W3114157713 hasConcept C11413529 @default.
- W3114157713 hasConcept C199360897 @default.
- W3114157713 hasConcept C2779843651 @default.
- W3114157713 hasConcept C41008148 @default.
- W3114157713 hasConceptScore W3114157713C11413529 @default.
- W3114157713 hasConceptScore W3114157713C199360897 @default.
- W3114157713 hasConceptScore W3114157713C2779843651 @default.
- W3114157713 hasConceptScore W3114157713C41008148 @default.
- W3114157713 hasFunder F4320323103 @default.
- W3114157713 hasFunder F4320334874 @default.
- W3114157713 hasLocation W31141577131 @default.
- W3114157713 hasOpenAccess W3114157713 @default.
- W3114157713 hasPrimaryLocation W31141577131 @default.
- W3114157713 hasRelatedWork W2333698505 @default.
- W3114157713 hasRelatedWork W2351491280 @default.
- W3114157713 hasRelatedWork W2361693269 @default.
- W3114157713 hasRelatedWork W2371447506 @default.
- W3114157713 hasRelatedWork W2374650051 @default.
- W3114157713 hasRelatedWork W2378822193 @default.
- W3114157713 hasRelatedWork W2386767533 @default.
- W3114157713 hasRelatedWork W2533640787 @default.
- W3114157713 hasRelatedWork W3007062608 @default.
- W3114157713 hasRelatedWork W303980170 @default.
- W3114157713 isParatext "false" @default.
- W3114157713 isRetracted "false" @default.
- W3114157713 magId "3114157713" @default.
- W3114157713 workType "article" @default.