Matches in SemOpenAlex for { <https://semopenalex.org/work/W3114204546> ?p ?o ?g. }
- W3114204546 endingPage "565" @default.
- W3114204546 startingPage "551" @default.
- W3114204546 abstract "Purpose Preclinical radiation replicating clinical intensity modulated radiation therapy (IMRT) techniques can provide data translatable to clinical practice. For this work, treatment plans were created for oxygen-guided dose-painting in small animals using inverse-planned IMRT. Spatially varying beam intensities were achieved using 3-dimensional (3D)-printed compensators. Methods and Materials Optimized beam fluence from arbitrary gantry angles was determined using a verified model of the XRAD225Cx treatment beam. Compensators were 3D-printed with varied thickness to provide desired attenuation using copper/polylactic-acid. Spatial resolution capabilities were investigated using printed test-patterns. Following American Association of Physicists in Medicine TG119, a 5-beam IMRT plan was created for a miniaturized (∼1/8th scale) C-shape target. Electron paramagnetic resonance imaging of murine tumor oxygenation guided simultaneous integrated boost (SIB) plans conformally treating tumor to a base dose (Rx1) with boost (Rx2) based on tumor oxygenation. The 3D-printed compensator intensity modulation accuracy and precision was evaluated by individually delivering each field to a phantom containing radiochromic film and subsequent per-field gamma analysis. The methodology was validated end-to-end with composite delivery (incorporating 3D-printed tungsten/polylactic-acid beam trimmers to reduce out-of-field leakage) of the oxygen-guided SIB plan to a phantom containing film and subsequent gamma analysis. Results Resolution test-patterns demonstrate practical printer resolution of ∼0.7 mm, corresponding to 1.0 mm bixels at the isocenter. The miniaturized C-shape plan provides planning target volume coverage (V95% = 95%) with organ sparing (organs at risk Dmax < 50%). The SIB plan to hypoxic tumor demonstrates the utility of this approach (hypoxic tumor V95%,Rx2 = 91.6%, normoxic tumor V95%,Rx1 = 95.7%, normal tissue V100%,Rx1 = 7.1%). The more challenging SIB plan to boost the normoxic tumor rim achieved normoxic tumor V95%,Rx2 = 90.9%, hypoxic tumor V95%,Rx1 = 62.7%, and normal tissue V100%,Rx2 = 5.3%. Average per-field gamma passing rates using 3%/1.0 mm, 3%/0.7 mm, and 3%/0.5 mm criteria were 98.8% ± 2.8%, 96.6% ± 4.1%, and 90.6% ± 5.9%, respectively. Composite delivery of the hypoxia boost plan and gamma analysis (3%/1 mm) gave passing results of 95.3% and 98.1% for the 2 measured orthogonal dose planes. Conclusions This simple and cost-effective approach using 3D-printed compensators for small-animal IMRT provides a methodology enabling preclinical studies that can be readily translated into the clinic. The presented oxygen-guided dose-painting demonstrates that this methodology will facilitate studies driving much needed biologic personalization of radiation therapy for improvements in patient outcomes. Preclinical radiation replicating clinical intensity modulated radiation therapy (IMRT) techniques can provide data translatable to clinical practice. For this work, treatment plans were created for oxygen-guided dose-painting in small animals using inverse-planned IMRT. Spatially varying beam intensities were achieved using 3-dimensional (3D)-printed compensators. Optimized beam fluence from arbitrary gantry angles was determined using a verified model of the XRAD225Cx treatment beam. Compensators were 3D-printed with varied thickness to provide desired attenuation using copper/polylactic-acid. Spatial resolution capabilities were investigated using printed test-patterns. Following American Association of Physicists in Medicine TG119, a 5-beam IMRT plan was created for a miniaturized (∼1/8th scale) C-shape target. Electron paramagnetic resonance imaging of murine tumor oxygenation guided simultaneous integrated boost (SIB) plans conformally treating tumor to a base dose (Rx1) with boost (Rx2) based on tumor oxygenation. The 3D-printed compensator intensity modulation accuracy and precision was evaluated by individually delivering each field to a phantom containing radiochromic film and subsequent per-field gamma analysis. The methodology was validated end-to-end with composite delivery (incorporating 3D-printed tungsten/polylactic-acid beam trimmers to reduce out-of-field leakage) of the oxygen-guided SIB plan to a phantom containing film and subsequent gamma analysis. Resolution test-patterns demonstrate practical printer resolution of ∼0.7 mm, corresponding to 1.0 mm bixels at the isocenter. The miniaturized C-shape plan provides planning target volume coverage (V95% = 95%) with organ sparing (organs at risk Dmax < 50%). The SIB plan to hypoxic tumor demonstrates the utility of this approach (hypoxic tumor V95%,Rx2 = 91.6%, normoxic tumor V95%,Rx1 = 95.7%, normal tissue V100%,Rx1 = 7.1%). The more challenging SIB plan to boost the normoxic tumor rim achieved normoxic tumor V95%,Rx2 = 90.9%, hypoxic tumor V95%,Rx1 = 62.7%, and normal tissue V100%,Rx2 = 5.3%. Average per-field gamma passing rates using 3%/1.0 mm, 3%/0.7 mm, and 3%/0.5 mm criteria were 98.8% ± 2.8%, 96.6% ± 4.1%, and 90.6% ± 5.9%, respectively. Composite delivery of the hypoxia boost plan and gamma analysis (3%/1 mm) gave passing results of 95.3% and 98.1% for the 2 measured orthogonal dose planes. This simple and cost-effective approach using 3D-printed compensators for small-animal IMRT provides a methodology enabling preclinical studies that can be readily translated into the clinic. The presented oxygen-guided dose-painting demonstrates that this methodology will facilitate studies driving much needed biologic personalization of radiation therapy for improvements in patient outcomes." @default.
- W3114204546 created "2021-01-05" @default.
- W3114204546 creator A5007642363 @default.
- W3114204546 creator A5008543269 @default.
- W3114204546 creator A5026590397 @default.
- W3114204546 creator A5028537166 @default.
- W3114204546 creator A5049163064 @default.
- W3114204546 creator A5050574477 @default.
- W3114204546 creator A5054855052 @default.
- W3114204546 creator A5071753972 @default.
- W3114204546 creator A5081055760 @default.
- W3114204546 creator A5086339485 @default.
- W3114204546 date "2021-06-01" @default.
- W3114204546 modified "2023-10-18" @default.
- W3114204546 title "Small Animal IMRT Using 3D-Printed Compensators" @default.
- W3114204546 cites W132698564 @default.
- W3114204546 cites W1964413769 @default.
- W3114204546 cites W1967121735 @default.
- W3114204546 cites W1973743319 @default.
- W3114204546 cites W1976767748 @default.
- W3114204546 cites W1982675823 @default.
- W3114204546 cites W1983882042 @default.
- W3114204546 cites W1995363983 @default.
- W3114204546 cites W2002760403 @default.
- W3114204546 cites W2013436421 @default.
- W3114204546 cites W2016127716 @default.
- W3114204546 cites W2027569331 @default.
- W3114204546 cites W2029213313 @default.
- W3114204546 cites W2036780699 @default.
- W3114204546 cites W2039828110 @default.
- W3114204546 cites W2040870650 @default.
- W3114204546 cites W2041401548 @default.
- W3114204546 cites W2041880997 @default.
- W3114204546 cites W2044890358 @default.
- W3114204546 cites W2045461708 @default.
- W3114204546 cites W2050034605 @default.
- W3114204546 cites W2054664760 @default.
- W3114204546 cites W2054946224 @default.
- W3114204546 cites W2064113156 @default.
- W3114204546 cites W2070266075 @default.
- W3114204546 cites W2071786042 @default.
- W3114204546 cites W2085177923 @default.
- W3114204546 cites W2090392139 @default.
- W3114204546 cites W2091761369 @default.
- W3114204546 cites W2108806276 @default.
- W3114204546 cites W2116150717 @default.
- W3114204546 cites W2120950852 @default.
- W3114204546 cites W2132370569 @default.
- W3114204546 cites W2134325392 @default.
- W3114204546 cites W2142669245 @default.
- W3114204546 cites W2162755712 @default.
- W3114204546 cites W2162905297 @default.
- W3114204546 cites W2291887063 @default.
- W3114204546 cites W2293836989 @default.
- W3114204546 cites W2325369455 @default.
- W3114204546 cites W2550114459 @default.
- W3114204546 cites W2578888194 @default.
- W3114204546 cites W2604380817 @default.
- W3114204546 cites W2752427962 @default.
- W3114204546 cites W2781466656 @default.
- W3114204546 cites W2788208686 @default.
- W3114204546 cites W2899852478 @default.
- W3114204546 cites W2910575622 @default.
- W3114204546 cites W2913940518 @default.
- W3114204546 cites W2969861092 @default.
- W3114204546 cites W2980812702 @default.
- W3114204546 cites W2980997627 @default.
- W3114204546 cites W3015823771 @default.
- W3114204546 cites W4249884163 @default.
- W3114204546 doi "https://doi.org/10.1016/j.ijrobp.2020.12.028" @default.
- W3114204546 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8122034" @default.
- W3114204546 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33373659" @default.
- W3114204546 hasPublicationYear "2021" @default.
- W3114204546 type Work @default.
- W3114204546 sameAs 3114204546 @default.
- W3114204546 citedByCount "7" @default.
- W3114204546 countsByYear W31142045462021 @default.
- W3114204546 countsByYear W31142045462022 @default.
- W3114204546 countsByYear W31142045462023 @default.
- W3114204546 crossrefType "journal-article" @default.
- W3114204546 hasAuthorship W3114204546A5007642363 @default.
- W3114204546 hasAuthorship W3114204546A5008543269 @default.
- W3114204546 hasAuthorship W3114204546A5026590397 @default.
- W3114204546 hasAuthorship W3114204546A5028537166 @default.
- W3114204546 hasAuthorship W3114204546A5049163064 @default.
- W3114204546 hasAuthorship W3114204546A5050574477 @default.
- W3114204546 hasAuthorship W3114204546A5054855052 @default.
- W3114204546 hasAuthorship W3114204546A5071753972 @default.
- W3114204546 hasAuthorship W3114204546A5081055760 @default.
- W3114204546 hasAuthorship W3114204546A5086339485 @default.
- W3114204546 hasBestOaLocation W31142045462 @default.
- W3114204546 hasConcept C104293457 @default.
- W3114204546 hasConcept C120665830 @default.
- W3114204546 hasConcept C121332964 @default.
- W3114204546 hasConcept C136229726 @default.
- W3114204546 hasConcept C168834538 @default.
- W3114204546 hasConcept C181401712 @default.
- W3114204546 hasConcept C192562407 @default.