Matches in SemOpenAlex for { <https://semopenalex.org/work/W3114226933> ?p ?o ?g. }
- W3114226933 endingPage "1767" @default.
- W3114226933 startingPage "1738" @default.
- W3114226933 abstract "With a population of 267 million, Indonesia faces the significant challenge of inaccurate rice production data leading to a flawed national rice import policy and supply problems. Its 2018 rice production and harvest area data were generated through the Area Sampling Frame (ASF) method which incurred high labour and financial costs as well as failing to optimize accuracy; hence, an alternative method needs exploration. This study compares ASF and remote sensing Synthetic Aperture Radar (SAR) methods to calculate rice growth stages (RGS) using Indramayu Regency, the highest rice producer in West Java Province, as the study area. The SAR-based method used time-series of Vertical Horizontal (VH) polarization of Sentinel-1A data that employed a combination of k-means clustering, hierarchical cluster analysis (HCA), a visual interpretation and support vector machine (SVM) classifier. Both SAR and ASF methods can generate results on a monthly basis, although remote sensing satellite time revisits can be shortened (every 12 days). Whilst the ASF, a basic technique for collecting agricultural statistics, was easy to implement in large-scale areas its accuracy depended on the quantity and representativeness of the samples. This study applied the ASF by simulating a sample size of 1.7%, 3.3% and 5% of a rice field area with unmanned aerial vehicles (UAVs) data as a reference. Whilst remote sensing SAR methods involve complex data processing the image classification process can be conducted automatically and cost-effectively (data and its software are free of charge). Moreover, it yields not only statistical data on RGS but also determines the spatial planting patterns and the RGS distribution at 10 m pixel resolution. This method showed more accurate results with overall accuracy of image classification of 81.89% and a kappa coefficient (κ) of 0.73. The comparative result was relatively small, i.e., 4,094.89 ha more than the ASF results (3.5% difference), since this study covered a limited research area. Nonetheless, with evidence of more accurate results remote sensing holds the potential for replication across the country’s 416 regencies, so enabling government to develop more appropriate policies that minimize the risks of either a surplus or shortage in the nation’s most important food supply." @default.
- W3114226933 created "2021-01-05" @default.
- W3114226933 creator A5006463784 @default.
- W3114226933 creator A5042245216 @default.
- W3114226933 creator A5048127359 @default.
- W3114226933 creator A5064421096 @default.
- W3114226933 creator A5067176061 @default.
- W3114226933 date "2020-12-20" @default.
- W3114226933 modified "2023-10-01" @default.
- W3114226933 title "Remote sensing versus the area sampling frame method in paddy rice acreage estimation in Indramayu regency, West Java province, Indonesia" @default.
- W3114226933 cites W1516198666 @default.
- W3114226933 cites W1990244654 @default.
- W3114226933 cites W2008175490 @default.
- W3114226933 cites W2025025456 @default.
- W3114226933 cites W2034394311 @default.
- W3114226933 cites W2047334881 @default.
- W3114226933 cites W2063907334 @default.
- W3114226933 cites W2075001972 @default.
- W3114226933 cites W2077403302 @default.
- W3114226933 cites W2143173879 @default.
- W3114226933 cites W2144447636 @default.
- W3114226933 cites W2155621615 @default.
- W3114226933 cites W2402632305 @default.
- W3114226933 cites W2520905560 @default.
- W3114226933 cites W2531364580 @default.
- W3114226933 cites W2587031013 @default.
- W3114226933 cites W2589995157 @default.
- W3114226933 cites W2593950021 @default.
- W3114226933 cites W2609942641 @default.
- W3114226933 cites W2620657726 @default.
- W3114226933 cites W2751983466 @default.
- W3114226933 cites W2766040687 @default.
- W3114226933 cites W2769086548 @default.
- W3114226933 cites W2776146695 @default.
- W3114226933 cites W2785681726 @default.
- W3114226933 cites W2789931197 @default.
- W3114226933 cites W2810530065 @default.
- W3114226933 cites W2886106861 @default.
- W3114226933 cites W2909472882 @default.
- W3114226933 cites W2914129519 @default.
- W3114226933 cites W2914184896 @default.
- W3114226933 cites W2920820407 @default.
- W3114226933 cites W2923165032 @default.
- W3114226933 cites W2937012087 @default.
- W3114226933 cites W2937220696 @default.
- W3114226933 cites W2952411786 @default.
- W3114226933 cites W2960002701 @default.
- W3114226933 cites W2997840851 @default.
- W3114226933 cites W4245615851 @default.
- W3114226933 doi "https://doi.org/10.1080/01431161.2020.1842541" @default.
- W3114226933 hasPublicationYear "2020" @default.
- W3114226933 type Work @default.
- W3114226933 sameAs 3114226933 @default.
- W3114226933 citedByCount "13" @default.
- W3114226933 countsByYear W31142269332021 @default.
- W3114226933 countsByYear W31142269332022 @default.
- W3114226933 countsByYear W31142269332023 @default.
- W3114226933 crossrefType "journal-article" @default.
- W3114226933 hasAuthorship W3114226933A5006463784 @default.
- W3114226933 hasAuthorship W3114226933A5042245216 @default.
- W3114226933 hasAuthorship W3114226933A5048127359 @default.
- W3114226933 hasAuthorship W3114226933A5064421096 @default.
- W3114226933 hasAuthorship W3114226933A5067176061 @default.
- W3114226933 hasBestOaLocation W31142269331 @default.
- W3114226933 hasConcept C105795698 @default.
- W3114226933 hasConcept C133462117 @default.
- W3114226933 hasConcept C144024400 @default.
- W3114226933 hasConcept C149923435 @default.
- W3114226933 hasConcept C154945302 @default.
- W3114226933 hasConcept C166957645 @default.
- W3114226933 hasConcept C199360897 @default.
- W3114226933 hasConcept C205649164 @default.
- W3114226933 hasConcept C2908647359 @default.
- W3114226933 hasConcept C33923547 @default.
- W3114226933 hasConcept C37381756 @default.
- W3114226933 hasConcept C41008148 @default.
- W3114226933 hasConcept C548217200 @default.
- W3114226933 hasConcept C62649853 @default.
- W3114226933 hasConcept C73555534 @default.
- W3114226933 hasConcept C85582077 @default.
- W3114226933 hasConcept C87360688 @default.
- W3114226933 hasConceptScore W3114226933C105795698 @default.
- W3114226933 hasConceptScore W3114226933C133462117 @default.
- W3114226933 hasConceptScore W3114226933C144024400 @default.
- W3114226933 hasConceptScore W3114226933C149923435 @default.
- W3114226933 hasConceptScore W3114226933C154945302 @default.
- W3114226933 hasConceptScore W3114226933C166957645 @default.
- W3114226933 hasConceptScore W3114226933C199360897 @default.
- W3114226933 hasConceptScore W3114226933C205649164 @default.
- W3114226933 hasConceptScore W3114226933C2908647359 @default.
- W3114226933 hasConceptScore W3114226933C33923547 @default.
- W3114226933 hasConceptScore W3114226933C37381756 @default.
- W3114226933 hasConceptScore W3114226933C41008148 @default.
- W3114226933 hasConceptScore W3114226933C548217200 @default.
- W3114226933 hasConceptScore W3114226933C62649853 @default.
- W3114226933 hasConceptScore W3114226933C73555534 @default.
- W3114226933 hasConceptScore W3114226933C85582077 @default.
- W3114226933 hasConceptScore W3114226933C87360688 @default.