Matches in SemOpenAlex for { <https://semopenalex.org/work/W3114233071> ?p ?o ?g. }
- W3114233071 endingPage "22" @default.
- W3114233071 startingPage "11" @default.
- W3114233071 abstract "Sentiment analysis is the process of determining the attitude or the emotional state of a text automatically. Many algorithms are proposed for this task including ensemble methods, which have the potential to decrease error rates of the individual base learners considerably. In many machine learning tasks and especially in sentiment analysis, extracting informative features is as important as developing sophisticated classifiers. In this study, a stacked ensemble method is proposed for sentiment analysis, which systematically combines six feature extraction methods and three classifiers. The proposed method obtains cross-validation accuracies of 89.6%, 90.7% and 67.2% on large movie, Turkish movie and SemEval-2017 datasets, respectively, outperforming the other classifiers. The accuracy improvements are shown to be statistically significant at the 99% confidence level by performing a Z-test." @default.
- W3114233071 created "2021-01-05" @default.
- W3114233071 creator A5002258193 @default.
- W3114233071 creator A5056841774 @default.
- W3114233071 creator A5076466902 @default.
- W3114233071 creator A5082103872 @default.
- W3114233071 date "2020-12-08" @default.
- W3114233071 modified "2023-09-26" @default.
- W3114233071 title "FBSEM: A Novel Feature-Based Stacked Ensemble Method for Sentiment Analysis" @default.
- W3114233071 cites W1969974515 @default.
- W3114233071 cites W1978394996 @default.
- W3114233071 cites W1995068038 @default.
- W3114233071 cites W1996235486 @default.
- W3114233071 cites W2002016471 @default.
- W3114233071 cites W2003303386 @default.
- W3114233071 cites W2011432097 @default.
- W3114233071 cites W2014711341 @default.
- W3114233071 cites W2018222191 @default.
- W3114233071 cites W2022120982 @default.
- W3114233071 cites W2025478229 @default.
- W3114233071 cites W2069539533 @default.
- W3114233071 cites W2090595198 @default.
- W3114233071 cites W2096707493 @default.
- W3114233071 cites W2101746535 @default.
- W3114233071 cites W2120986529 @default.
- W3114233071 cites W2124388587 @default.
- W3114233071 cites W2134684245 @default.
- W3114233071 cites W2143455647 @default.
- W3114233071 cites W2155632266 @default.
- W3114233071 cites W2156909104 @default.
- W3114233071 cites W2253570946 @default.
- W3114233071 cites W2306706380 @default.
- W3114233071 cites W2323115738 @default.
- W3114233071 cites W2553002154 @default.
- W3114233071 cites W2584429674 @default.
- W3114233071 cites W2608224443 @default.
- W3114233071 cites W2624775096 @default.
- W3114233071 cites W2737521397 @default.
- W3114233071 cites W2753590003 @default.
- W3114233071 cites W2761067644 @default.
- W3114233071 cites W2769317996 @default.
- W3114233071 cites W2785939461 @default.
- W3114233071 cites W2804487525 @default.
- W3114233071 cites W2806345781 @default.
- W3114233071 cites W2822523832 @default.
- W3114233071 cites W2916132663 @default.
- W3114233071 cites W2950133940 @default.
- W3114233071 cites W2950577311 @default.
- W3114233071 cites W2996489182 @default.
- W3114233071 doi "https://doi.org/10.5815/ijitcs.2020.06.02" @default.
- W3114233071 hasPublicationYear "2020" @default.
- W3114233071 type Work @default.
- W3114233071 sameAs 3114233071 @default.
- W3114233071 citedByCount "3" @default.
- W3114233071 countsByYear W31142330712021 @default.
- W3114233071 countsByYear W31142330712022 @default.
- W3114233071 crossrefType "journal-article" @default.
- W3114233071 hasAuthorship W3114233071A5002258193 @default.
- W3114233071 hasAuthorship W3114233071A5056841774 @default.
- W3114233071 hasAuthorship W3114233071A5076466902 @default.
- W3114233071 hasAuthorship W3114233071A5082103872 @default.
- W3114233071 hasBestOaLocation W31142330711 @default.
- W3114233071 hasConcept C111919701 @default.
- W3114233071 hasConcept C119857082 @default.
- W3114233071 hasConcept C138885662 @default.
- W3114233071 hasConcept C153180895 @default.
- W3114233071 hasConcept C154945302 @default.
- W3114233071 hasConcept C162324750 @default.
- W3114233071 hasConcept C187736073 @default.
- W3114233071 hasConcept C204321447 @default.
- W3114233071 hasConcept C2776401178 @default.
- W3114233071 hasConcept C2780451532 @default.
- W3114233071 hasConcept C2781121862 @default.
- W3114233071 hasConcept C41008148 @default.
- W3114233071 hasConcept C41895202 @default.
- W3114233071 hasConcept C44572571 @default.
- W3114233071 hasConcept C45942800 @default.
- W3114233071 hasConcept C66402592 @default.
- W3114233071 hasConcept C98045186 @default.
- W3114233071 hasConceptScore W3114233071C111919701 @default.
- W3114233071 hasConceptScore W3114233071C119857082 @default.
- W3114233071 hasConceptScore W3114233071C138885662 @default.
- W3114233071 hasConceptScore W3114233071C153180895 @default.
- W3114233071 hasConceptScore W3114233071C154945302 @default.
- W3114233071 hasConceptScore W3114233071C162324750 @default.
- W3114233071 hasConceptScore W3114233071C187736073 @default.
- W3114233071 hasConceptScore W3114233071C204321447 @default.
- W3114233071 hasConceptScore W3114233071C2776401178 @default.
- W3114233071 hasConceptScore W3114233071C2780451532 @default.
- W3114233071 hasConceptScore W3114233071C2781121862 @default.
- W3114233071 hasConceptScore W3114233071C41008148 @default.
- W3114233071 hasConceptScore W3114233071C41895202 @default.
- W3114233071 hasConceptScore W3114233071C44572571 @default.
- W3114233071 hasConceptScore W3114233071C45942800 @default.
- W3114233071 hasConceptScore W3114233071C66402592 @default.
- W3114233071 hasConceptScore W3114233071C98045186 @default.
- W3114233071 hasIssue "6" @default.
- W3114233071 hasLocation W31142330711 @default.