Matches in SemOpenAlex for { <https://semopenalex.org/work/W3114249715> ?p ?o ?g. }
- W3114249715 endingPage "112241" @default.
- W3114249715 startingPage "112241" @default.
- W3114249715 abstract "Abstract For typical cloud conditions, a clear sky retrieval rate (CSRR) >67% is required to meet the Global Climate Observing System temporal interval requirement of 10 days when mapping canopy biophysical variables (‘variables’). Physically based algorithms suitable for global mapping of variables using multispectral satellite imagery, e.g. the Simplified Level 2 Prototype Processor (SL2P), typically have a CSRR between 25% and 75%. An Active Learning Regularization (ALR) approach was developed to increase the CSRR rate while satisfying uncertainty requirements. A local calibration database for each variable was produced from representative valid SL2P estimates and associated Sentinel-2 Multispectral Instrument surface reflectance estimates. Predictors for each variable were developed by i) using Least Absolute Shrinkage and Selection Operator regression to select a subset of spectral vegetation indices (VIs) from a provided library, ii) removing outliers from the calibration database by trimming the conditional distribution of each variable given a VI, and iii) calibrating a non-linear regression predictor of the variable given the selected VIs using the trimmed database. ALR was applied to MSI imagery acquired over the Canadian Prairies during the 2016 and 2018 growing seasons and validated with in-situ data collected over 50 fields by the SMAPVEX16-MB campaign. The mean CSRR during the 2018 growing season was ~98% (~70%) for ALR (SL2P) for all canopy variables except FCOVER and ~ 98% for FCOVER using both ALR and SL2P. In comparison to SL2P, ALR had increased agreement rates with in-situ leaf area index (86% versus 79%) and fraction cover (96% versus 79%) but not canopy water content (35% versus 53%). Intercomparison with valid SL2P estimates from different MSI images acquired within ±2 days found that 90% [±5%] of ALR estimates fell within the uncertainty of the valid estimates. These findings support the hypothesis that, over croplands, ALR significantly increases CSRR over SL2P without appreciably increasing uncertainty for variables retrieved by SL2P within thematic performance requirements." @default.
- W3114249715 created "2021-01-05" @default.
- W3114249715 creator A5001681467 @default.
- W3114249715 creator A5025242414 @default.
- W3114249715 date "2021-03-01" @default.
- W3114249715 modified "2023-09-23" @default.
- W3114249715 title "Active learning regularization increases clear sky retrieval rates for vegetation biophysical variables using Sentinel-2 data" @default.
- W3114249715 cites W196321102 @default.
- W3114249715 cites W1963836745 @default.
- W3114249715 cites W1966123034 @default.
- W3114249715 cites W1968235624 @default.
- W3114249715 cites W1969548928 @default.
- W3114249715 cites W1978160572 @default.
- W3114249715 cites W1987997875 @default.
- W3114249715 cites W1988872612 @default.
- W3114249715 cites W2010308608 @default.
- W3114249715 cites W2042997202 @default.
- W3114249715 cites W2052700773 @default.
- W3114249715 cites W2054502362 @default.
- W3114249715 cites W2059501000 @default.
- W3114249715 cites W2060426168 @default.
- W3114249715 cites W2066612219 @default.
- W3114249715 cites W2069883641 @default.
- W3114249715 cites W2073372260 @default.
- W3114249715 cites W2079842406 @default.
- W3114249715 cites W2081887174 @default.
- W3114249715 cites W2094420085 @default.
- W3114249715 cites W2107030334 @default.
- W3114249715 cites W2109006150 @default.
- W3114249715 cites W2144121839 @default.
- W3114249715 cites W2148720802 @default.
- W3114249715 cites W2160434086 @default.
- W3114249715 cites W2166312616 @default.
- W3114249715 cites W2224070395 @default.
- W3114249715 cites W2404939661 @default.
- W3114249715 cites W2516818410 @default.
- W3114249715 cites W2529670104 @default.
- W3114249715 cites W2605633752 @default.
- W3114249715 cites W2709120126 @default.
- W3114249715 cites W2735628871 @default.
- W3114249715 cites W2803502822 @default.
- W3114249715 cites W2808125284 @default.
- W3114249715 cites W2889270078 @default.
- W3114249715 cites W2905799827 @default.
- W3114249715 cites W2906508587 @default.
- W3114249715 cites W2920930972 @default.
- W3114249715 cites W2932791400 @default.
- W3114249715 cites W2980382960 @default.
- W3114249715 doi "https://doi.org/10.1016/j.rse.2020.112241" @default.
- W3114249715 hasPublicationYear "2021" @default.
- W3114249715 type Work @default.
- W3114249715 sameAs 3114249715 @default.
- W3114249715 citedByCount "4" @default.
- W3114249715 countsByYear W31142497152021 @default.
- W3114249715 countsByYear W31142497152022 @default.
- W3114249715 countsByYear W31142497152023 @default.
- W3114249715 crossrefType "journal-article" @default.
- W3114249715 hasAuthorship W3114249715A5001681467 @default.
- W3114249715 hasAuthorship W3114249715A5025242414 @default.
- W3114249715 hasBestOaLocation W31142497151 @default.
- W3114249715 hasConcept C111368507 @default.
- W3114249715 hasConcept C127313418 @default.
- W3114249715 hasConcept C132651083 @default.
- W3114249715 hasConcept C142724271 @default.
- W3114249715 hasConcept C153294291 @default.
- W3114249715 hasConcept C1549246 @default.
- W3114249715 hasConcept C154945302 @default.
- W3114249715 hasConcept C205649164 @default.
- W3114249715 hasConcept C2776133958 @default.
- W3114249715 hasConcept C2776135515 @default.
- W3114249715 hasConcept C2780376076 @default.
- W3114249715 hasConcept C39432304 @default.
- W3114249715 hasConcept C41008148 @default.
- W3114249715 hasConcept C62649853 @default.
- W3114249715 hasConcept C71924100 @default.
- W3114249715 hasConcept C73329638 @default.
- W3114249715 hasConceptScore W3114249715C111368507 @default.
- W3114249715 hasConceptScore W3114249715C127313418 @default.
- W3114249715 hasConceptScore W3114249715C132651083 @default.
- W3114249715 hasConceptScore W3114249715C142724271 @default.
- W3114249715 hasConceptScore W3114249715C153294291 @default.
- W3114249715 hasConceptScore W3114249715C1549246 @default.
- W3114249715 hasConceptScore W3114249715C154945302 @default.
- W3114249715 hasConceptScore W3114249715C205649164 @default.
- W3114249715 hasConceptScore W3114249715C2776133958 @default.
- W3114249715 hasConceptScore W3114249715C2776135515 @default.
- W3114249715 hasConceptScore W3114249715C2780376076 @default.
- W3114249715 hasConceptScore W3114249715C39432304 @default.
- W3114249715 hasConceptScore W3114249715C41008148 @default.
- W3114249715 hasConceptScore W3114249715C62649853 @default.
- W3114249715 hasConceptScore W3114249715C71924100 @default.
- W3114249715 hasConceptScore W3114249715C73329638 @default.
- W3114249715 hasLocation W31142497151 @default.
- W3114249715 hasOpenAccess W3114249715 @default.
- W3114249715 hasPrimaryLocation W31142497151 @default.
- W3114249715 hasRelatedWork W1967294530 @default.
- W3114249715 hasRelatedWork W2078865635 @default.
- W3114249715 hasRelatedWork W2083270190 @default.