Matches in SemOpenAlex for { <https://semopenalex.org/work/W3114252332> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3114252332 abstract "The paper proposes a novel low-complexity Convolutional Neural Network (CNN) architecture for block-wise angular intra-prediction in lossless video coding. The proposed CNN architecture is designed based on an efficient patch processing layer structure. The proposed CNN-based prediction method is employed to process an input patch containing the causal neighborhood of the current block in order to directly generate the predicted block. The trained models are integrated in the HEVC video coding standard to perform CNN-based angular intra-prediction and to compete with the conventional HEVC prediction. The proposed CNN architecture contains a reduced number of parameters equivalent to only 37% of that of the state-of-the-art reference CNN architecture. Experimental results show that the inference runtime is also reduced by around 5.5% compared to that of the reference method. At the same time, the proposed coding systems yield 83% to 91% of the compression performance of the reference method. The results demonstrate the potential of structural and complexity optimizations in CNN-based intra-prediction for lossless HEVC." @default.
- W3114252332 created "2021-01-05" @default.
- W3114252332 creator A5022076322 @default.
- W3114252332 creator A5060196436 @default.
- W3114252332 creator A5088598176 @default.
- W3114252332 date "2020-09-21" @default.
- W3114252332 modified "2023-09-24" @default.
- W3114252332 title "Low-Complexity Angular Intra-Prediction Convolutional Neural Network for Lossless HEVC" @default.
- W3114252332 cites W2120051712 @default.
- W3114252332 cites W2140199336 @default.
- W3114252332 cites W2146395539 @default.
- W3114252332 cites W2510648513 @default.
- W3114252332 cites W2599701415 @default.
- W3114252332 cites W2612846844 @default.
- W3114252332 cites W2737258237 @default.
- W3114252332 cites W2791741309 @default.
- W3114252332 cites W2793361125 @default.
- W3114252332 cites W2872367892 @default.
- W3114252332 cites W2946432311 @default.
- W3114252332 cites W2962737519 @default.
- W3114252332 cites W2963003152 @default.
- W3114252332 cites W2963189365 @default.
- W3114252332 cites W2967142205 @default.
- W3114252332 cites W2968469126 @default.
- W3114252332 cites W2999868813 @default.
- W3114252332 cites W3031546776 @default.
- W3114252332 cites W3105615783 @default.
- W3114252332 doi "https://doi.org/10.1109/mmsp48831.2020.9287067" @default.
- W3114252332 hasPublicationYear "2020" @default.
- W3114252332 type Work @default.
- W3114252332 sameAs 3114252332 @default.
- W3114252332 citedByCount "2" @default.
- W3114252332 countsByYear W31142523322021 @default.
- W3114252332 countsByYear W31142523322023 @default.
- W3114252332 crossrefType "proceedings-article" @default.
- W3114252332 hasAuthorship W3114252332A5022076322 @default.
- W3114252332 hasAuthorship W3114252332A5060196436 @default.
- W3114252332 hasAuthorship W3114252332A5088598176 @default.
- W3114252332 hasConcept C105795698 @default.
- W3114252332 hasConcept C11413529 @default.
- W3114252332 hasConcept C153180895 @default.
- W3114252332 hasConcept C154945302 @default.
- W3114252332 hasConcept C175732694 @default.
- W3114252332 hasConcept C179518139 @default.
- W3114252332 hasConcept C179799912 @default.
- W3114252332 hasConcept C33923547 @default.
- W3114252332 hasConcept C41008148 @default.
- W3114252332 hasConcept C57273362 @default.
- W3114252332 hasConcept C78548338 @default.
- W3114252332 hasConcept C81081738 @default.
- W3114252332 hasConcept C81363708 @default.
- W3114252332 hasConceptScore W3114252332C105795698 @default.
- W3114252332 hasConceptScore W3114252332C11413529 @default.
- W3114252332 hasConceptScore W3114252332C153180895 @default.
- W3114252332 hasConceptScore W3114252332C154945302 @default.
- W3114252332 hasConceptScore W3114252332C175732694 @default.
- W3114252332 hasConceptScore W3114252332C179518139 @default.
- W3114252332 hasConceptScore W3114252332C179799912 @default.
- W3114252332 hasConceptScore W3114252332C33923547 @default.
- W3114252332 hasConceptScore W3114252332C41008148 @default.
- W3114252332 hasConceptScore W3114252332C57273362 @default.
- W3114252332 hasConceptScore W3114252332C78548338 @default.
- W3114252332 hasConceptScore W3114252332C81081738 @default.
- W3114252332 hasConceptScore W3114252332C81363708 @default.
- W3114252332 hasFunder F4320321730 @default.
- W3114252332 hasLocation W31142523321 @default.
- W3114252332 hasOpenAccess W3114252332 @default.
- W3114252332 hasPrimaryLocation W31142523321 @default.
- W3114252332 hasRelatedWork W2007294857 @default.
- W3114252332 hasRelatedWork W2089586272 @default.
- W3114252332 hasRelatedWork W2096690777 @default.
- W3114252332 hasRelatedWork W2116992381 @default.
- W3114252332 hasRelatedWork W2127546145 @default.
- W3114252332 hasRelatedWork W2349573707 @default.
- W3114252332 hasRelatedWork W2353075325 @default.
- W3114252332 hasRelatedWork W2382635182 @default.
- W3114252332 hasRelatedWork W2885421620 @default.
- W3114252332 hasRelatedWork W2015351340 @default.
- W3114252332 isParatext "false" @default.
- W3114252332 isRetracted "false" @default.
- W3114252332 magId "3114252332" @default.
- W3114252332 workType "article" @default.