Matches in SemOpenAlex for { <https://semopenalex.org/work/W3114259516> ?p ?o ?g. }
- W3114259516 endingPage "1701" @default.
- W3114259516 startingPage "1688" @default.
- W3114259516 abstract "We propose an approximation of echo state networks (ESNs) that can be efficiently implemented on digital hardware based on the mathematics of hyperdimensional computing. The reservoir of the proposed integer ESN (intESN) is a vector containing only n -bits integers (where is normally sufficient for a satisfactory performance). The recurrent matrix multiplication is replaced with an efficient cyclic shift operation. The proposed intESN approach is verified with typical tasks in reservoir computing: memorizing of a sequence of inputs, classifying time series, and learning dynamic processes. Such architecture results in dramatic improvements in memory footprint and computational efficiency, with minimal performance loss. The experiments on a field-programmable gate array confirm that the proposed intESN approach is much more energy efficient than the conventional ESN." @default.
- W3114259516 created "2021-01-05" @default.
- W3114259516 creator A5013958028 @default.
- W3114259516 creator A5056609448 @default.
- W3114259516 creator A5065925392 @default.
- W3114259516 creator A5090043052 @default.
- W3114259516 date "2022-04-01" @default.
- W3114259516 modified "2023-09-26" @default.
- W3114259516 title "Integer Echo State Networks: Efficient Reservoir Computing for Digital Hardware" @default.
- W3114259516 cites W1494248188 @default.
- W3114259516 cites W1597240425 @default.
- W3114259516 cites W1977664984 @default.
- W3114259516 cites W1986278072 @default.
- W3114259516 cites W2029967456 @default.
- W3114259516 cites W2042588857 @default.
- W3114259516 cites W2062622742 @default.
- W3114259516 cites W2064675550 @default.
- W3114259516 cites W2070862086 @default.
- W3114259516 cites W2070922095 @default.
- W3114259516 cites W2090839102 @default.
- W3114259516 cites W2094142488 @default.
- W3114259516 cites W2098290011 @default.
- W3114259516 cites W2099231026 @default.
- W3114259516 cites W2102385858 @default.
- W3114259516 cites W2103179919 @default.
- W3114259516 cites W2106963348 @default.
- W3114259516 cites W2107878631 @default.
- W3114259516 cites W2111072639 @default.
- W3114259516 cites W2118706537 @default.
- W3114259516 cites W2134603460 @default.
- W3114259516 cites W2144418115 @default.
- W3114259516 cites W2157306293 @default.
- W3114259516 cites W2157542201 @default.
- W3114259516 cites W2159682675 @default.
- W3114259516 cites W2171865010 @default.
- W3114259516 cites W2177933918 @default.
- W3114259516 cites W2178948334 @default.
- W3114259516 cites W2294916050 @default.
- W3114259516 cites W2295142501 @default.
- W3114259516 cites W2300242332 @default.
- W3114259516 cites W2314582146 @default.
- W3114259516 cites W2522828268 @default.
- W3114259516 cites W2554538030 @default.
- W3114259516 cites W2596354802 @default.
- W3114259516 cites W2604533912 @default.
- W3114259516 cites W2604814848 @default.
- W3114259516 cites W2608997467 @default.
- W3114259516 cites W2624514417 @default.
- W3114259516 cites W2638260265 @default.
- W3114259516 cites W2779129326 @default.
- W3114259516 cites W2782714865 @default.
- W3114259516 cites W2791738855 @default.
- W3114259516 cites W2796260258 @default.
- W3114259516 cites W2885420314 @default.
- W3114259516 cites W2902627790 @default.
- W3114259516 cites W2904922094 @default.
- W3114259516 cites W2950268605 @default.
- W3114259516 cites W2963492949 @default.
- W3114259516 cites W2963650979 @default.
- W3114259516 cites W2978376076 @default.
- W3114259516 cites W2988244882 @default.
- W3114259516 cites W3007777192 @default.
- W3114259516 cites W3048050109 @default.
- W3114259516 cites W308419704 @default.
- W3114259516 doi "https://doi.org/10.1109/tnnls.2020.3043309" @default.
- W3114259516 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33351770" @default.
- W3114259516 hasPublicationYear "2022" @default.
- W3114259516 type Work @default.
- W3114259516 sameAs 3114259516 @default.
- W3114259516 citedByCount "17" @default.
- W3114259516 countsByYear W31142595162020 @default.
- W3114259516 countsByYear W31142595162021 @default.
- W3114259516 countsByYear W31142595162022 @default.
- W3114259516 countsByYear W31142595162023 @default.
- W3114259516 crossrefType "journal-article" @default.
- W3114259516 hasAuthorship W3114259516A5013958028 @default.
- W3114259516 hasAuthorship W3114259516A5056609448 @default.
- W3114259516 hasAuthorship W3114259516A5065925392 @default.
- W3114259516 hasAuthorship W3114259516A5090043052 @default.
- W3114259516 hasBestOaLocation W31142595162 @default.
- W3114259516 hasConcept C111919701 @default.
- W3114259516 hasConcept C113775141 @default.
- W3114259516 hasConcept C11413529 @default.
- W3114259516 hasConcept C114614502 @default.
- W3114259516 hasConcept C121332964 @default.
- W3114259516 hasConcept C135796866 @default.
- W3114259516 hasConcept C147168706 @default.
- W3114259516 hasConcept C154945302 @default.
- W3114259516 hasConcept C172025690 @default.
- W3114259516 hasConcept C17349429 @default.
- W3114259516 hasConcept C173608175 @default.
- W3114259516 hasConcept C199360897 @default.
- W3114259516 hasConcept C202444582 @default.
- W3114259516 hasConcept C2778112365 @default.
- W3114259516 hasConcept C2779426996 @default.
- W3114259516 hasConcept C2780595030 @default.
- W3114259516 hasConcept C31258907 @default.
- W3114259516 hasConcept C33923547 @default.