Matches in SemOpenAlex for { <https://semopenalex.org/work/W3114401364> ?p ?o ?g. }
- W3114401364 endingPage "143" @default.
- W3114401364 startingPage "143" @default.
- W3114401364 abstract "The Deep Convolutional Neural Networks (DCNNs) have been a popular tool for image generation and restoration. In this work, we applied DCNNs to the problem of inpainting non-Gaussian astrophysical signal, in the context of Galactic diffuse emissions at the millimetric and submillimetric regimes, specifically Synchrotron and Thermal Dust emissions. Both signals are affected by contamination at small angular scales due to extragalactic radio sources (the former) and dusty star-forming galaxies (the latter). We compare the performance of the standard diffusive inpainting with that of two novel methodologies relying on DCNNs, namely Generative Adversarial Networks and Deep-Prior. We show that the methods based on the DCNNs are able to reproduce the statistical properties of the ground-truth signal more consistently with a higher confidence level. The Python Inpainter for Cosmological and AStrophysical SOurces (PICASSO) is a package encoding a suite of inpainting methods described in this work and has been made publicly available at http://giuspugl.github.io/picasso/." @default.
- W3114401364 created "2021-01-05" @default.
- W3114401364 creator A5055237451 @default.
- W3114401364 creator A5060821864 @default.
- W3114401364 date "2020-12-22" @default.
- W3114401364 modified "2023-09-30" @default.
- W3114401364 title "Inpainting Galactic Foreground Intensity and Polarization Maps Using Convolutional Neural Networks" @default.
- W3114401364 cites W1966667130 @default.
- W3114401364 cites W1976579441 @default.
- W3114401364 cites W2016888141 @default.
- W3114401364 cites W2024931169 @default.
- W3114401364 cites W2073622316 @default.
- W3114401364 cites W2091714505 @default.
- W3114401364 cites W2130824226 @default.
- W3114401364 cites W2479409071 @default.
- W3114401364 cites W2496839923 @default.
- W3114401364 cites W2531175724 @default.
- W3114401364 cites W2584956317 @default.
- W3114401364 cites W2738588019 @default.
- W3114401364 cites W2771305881 @default.
- W3114401364 cites W2896555815 @default.
- W3114401364 cites W2899239330 @default.
- W3114401364 cites W2908554219 @default.
- W3114401364 cites W2922580882 @default.
- W3114401364 cites W2950688433 @default.
- W3114401364 cites W2952638839 @default.
- W3114401364 cites W2955564341 @default.
- W3114401364 cites W2959953250 @default.
- W3114401364 cites W2971921995 @default.
- W3114401364 cites W2973195436 @default.
- W3114401364 cites W2990113658 @default.
- W3114401364 cites W3011955763 @default.
- W3114401364 cites W3038021525 @default.
- W3114401364 cites W3098202100 @default.
- W3114401364 cites W3098712457 @default.
- W3114401364 cites W3098724574 @default.
- W3114401364 cites W3100546413 @default.
- W3114401364 cites W3100810040 @default.
- W3114401364 cites W3101492148 @default.
- W3114401364 cites W3104853364 @default.
- W3114401364 cites W3105494006 @default.
- W3114401364 cites W3106186675 @default.
- W3114401364 cites W3106482025 @default.
- W3114401364 cites W3122299464 @default.
- W3114401364 cites W3138841107 @default.
- W3114401364 cites W4289916580 @default.
- W3114401364 doi "https://doi.org/10.3847/1538-4357/abc47c" @default.
- W3114401364 hasPublicationYear "2020" @default.
- W3114401364 type Work @default.
- W3114401364 sameAs 3114401364 @default.
- W3114401364 citedByCount "13" @default.
- W3114401364 countsByYear W31144013642021 @default.
- W3114401364 countsByYear W31144013642022 @default.
- W3114401364 countsByYear W31144013642023 @default.
- W3114401364 crossrefType "journal-article" @default.
- W3114401364 hasAuthorship W3114401364A5055237451 @default.
- W3114401364 hasAuthorship W3114401364A5060821864 @default.
- W3114401364 hasBestOaLocation W31144013641 @default.
- W3114401364 hasConcept C108583219 @default.
- W3114401364 hasConcept C111919701 @default.
- W3114401364 hasConcept C115961682 @default.
- W3114401364 hasConcept C11727466 @default.
- W3114401364 hasConcept C121332964 @default.
- W3114401364 hasConcept C149298590 @default.
- W3114401364 hasConcept C153180895 @default.
- W3114401364 hasConcept C154945302 @default.
- W3114401364 hasConcept C163716315 @default.
- W3114401364 hasConcept C41008148 @default.
- W3114401364 hasConcept C44870925 @default.
- W3114401364 hasConcept C519991488 @default.
- W3114401364 hasConcept C62520636 @default.
- W3114401364 hasConcept C81363708 @default.
- W3114401364 hasConcept C98444146 @default.
- W3114401364 hasConceptScore W3114401364C108583219 @default.
- W3114401364 hasConceptScore W3114401364C111919701 @default.
- W3114401364 hasConceptScore W3114401364C115961682 @default.
- W3114401364 hasConceptScore W3114401364C11727466 @default.
- W3114401364 hasConceptScore W3114401364C121332964 @default.
- W3114401364 hasConceptScore W3114401364C149298590 @default.
- W3114401364 hasConceptScore W3114401364C153180895 @default.
- W3114401364 hasConceptScore W3114401364C154945302 @default.
- W3114401364 hasConceptScore W3114401364C163716315 @default.
- W3114401364 hasConceptScore W3114401364C41008148 @default.
- W3114401364 hasConceptScore W3114401364C44870925 @default.
- W3114401364 hasConceptScore W3114401364C519991488 @default.
- W3114401364 hasConceptScore W3114401364C62520636 @default.
- W3114401364 hasConceptScore W3114401364C81363708 @default.
- W3114401364 hasConceptScore W3114401364C98444146 @default.
- W3114401364 hasIssue "2" @default.
- W3114401364 hasLocation W31144013641 @default.
- W3114401364 hasLocation W31144013642 @default.
- W3114401364 hasLocation W31144013643 @default.
- W3114401364 hasOpenAccess W3114401364 @default.
- W3114401364 hasPrimaryLocation W31144013641 @default.
- W3114401364 hasRelatedWork W1641631973 @default.
- W3114401364 hasRelatedWork W1690707023 @default.
- W3114401364 hasRelatedWork W2018460911 @default.
- W3114401364 hasRelatedWork W2732415564 @default.