Matches in SemOpenAlex for { <https://semopenalex.org/work/W3114429098> ?p ?o ?g. }
- W3114429098 abstract "Reinforcement learning (RL) has potential to provide innovative solutions to existing challenges in estimating joint moments in motion analysis, such as kinematic or electromyography (EMG) noise and unknown model parameters. Here, we explore feasibility of RL to assist joint moment estimation for biomechanical applications. Forearm and hand kinematics and forearm EMGs from four muscles during free finger and wrist movement were collected from six healthy subjects. Using the proximal policy optimization approach, we trained two types of RL agents that estimated joint moment based on measured kinematics or measured EMGs, respectively. To quantify the performance of trained RL agents, the estimated joint moment was used to drive a forward dynamic model for estimating kinematics, which was then compared with measured kinematics using Pearson correlation coefficient. The results demonstrated that both trained RL agents are feasible to estimate joint moment for wrist and metacarpophalangeal (MCP) joint motion prediction. The correlation coefficients between predicted and measured kinematics, derived from the kinematics-driven agent and subject-specific EMG-driven agents, were 98% ± 1% and 94% ± 3% for the wrist, respectively, and were 95% ± 2% and 84% ± 6% for the metacarpophalangeal joint, respectively. In addition, a biomechanically reasonable joint moment-angle-EMG relationship (i.e., dependence of joint moment on joint angle and EMG) was predicted using only 15 s of collected data. In conclusion, this study illustrates that an RL approach can be an alternative technique to conventional inverse dynamic analysis in human biomechanics study and EMG-driven human-machine interfacing applications." @default.
- W3114429098 created "2021-01-05" @default.
- W3114429098 creator A5036072216 @default.
- W3114429098 creator A5057538471 @default.
- W3114429098 creator A5074710096 @default.
- W3114429098 date "2021-02-01" @default.
- W3114429098 modified "2023-10-12" @default.
- W3114429098 title "Using Reinforcement Learning to Estimate Human Joint Moments From Electromyography or Joint Kinematics: An Alternative Solution to Musculoskeletal-Based Biomechanics" @default.
- W3114429098 cites W1988869584 @default.
- W3114429098 cites W2029780490 @default.
- W3114429098 cites W2040642322 @default.
- W3114429098 cites W2093676535 @default.
- W3114429098 cites W2113006204 @default.
- W3114429098 cites W2113998107 @default.
- W3114429098 cites W2124267516 @default.
- W3114429098 cites W2130281033 @default.
- W3114429098 cites W2145339207 @default.
- W3114429098 cites W2146672923 @default.
- W3114429098 cites W2155802509 @default.
- W3114429098 cites W2157780858 @default.
- W3114429098 cites W2169508341 @default.
- W3114429098 cites W2171188488 @default.
- W3114429098 cites W2257979135 @default.
- W3114429098 cites W2323110956 @default.
- W3114429098 cites W2490084223 @default.
- W3114429098 cites W2522619775 @default.
- W3114429098 cites W2542708710 @default.
- W3114429098 cites W2556533447 @default.
- W3114429098 cites W2610189169 @default.
- W3114429098 cites W2766447205 @default.
- W3114429098 cites W2771554623 @default.
- W3114429098 cites W2804325092 @default.
- W3114429098 cites W2809139847 @default.
- W3114429098 cites W2909711564 @default.
- W3114429098 cites W2971316385 @default.
- W3114429098 cites W3036216396 @default.
- W3114429098 doi "https://doi.org/10.1115/1.4049333" @default.
- W3114429098 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33332536" @default.
- W3114429098 hasPublicationYear "2021" @default.
- W3114429098 type Work @default.
- W3114429098 sameAs 3114429098 @default.
- W3114429098 citedByCount "13" @default.
- W3114429098 countsByYear W31144290982021 @default.
- W3114429098 countsByYear W31144290982022 @default.
- W3114429098 countsByYear W31144290982023 @default.
- W3114429098 crossrefType "journal-article" @default.
- W3114429098 hasAuthorship W3114429098A5036072216 @default.
- W3114429098 hasAuthorship W3114429098A5057538471 @default.
- W3114429098 hasAuthorship W3114429098A5074710096 @default.
- W3114429098 hasBestOaLocation W31144290981 @default.
- W3114429098 hasConcept C105702510 @default.
- W3114429098 hasConcept C121332964 @default.
- W3114429098 hasConcept C127413603 @default.
- W3114429098 hasConcept C170700871 @default.
- W3114429098 hasConcept C179254644 @default.
- W3114429098 hasConcept C18555067 @default.
- W3114429098 hasConcept C187523126 @default.
- W3114429098 hasConcept C2776881184 @default.
- W3114429098 hasConcept C2777515770 @default.
- W3114429098 hasConcept C2778216619 @default.
- W3114429098 hasConcept C2778802602 @default.
- W3114429098 hasConcept C2780214079 @default.
- W3114429098 hasConcept C33923547 @default.
- W3114429098 hasConcept C39920418 @default.
- W3114429098 hasConcept C41008148 @default.
- W3114429098 hasConcept C66938386 @default.
- W3114429098 hasConcept C71924100 @default.
- W3114429098 hasConcept C74650414 @default.
- W3114429098 hasConcept C99508421 @default.
- W3114429098 hasConceptScore W3114429098C105702510 @default.
- W3114429098 hasConceptScore W3114429098C121332964 @default.
- W3114429098 hasConceptScore W3114429098C127413603 @default.
- W3114429098 hasConceptScore W3114429098C170700871 @default.
- W3114429098 hasConceptScore W3114429098C179254644 @default.
- W3114429098 hasConceptScore W3114429098C18555067 @default.
- W3114429098 hasConceptScore W3114429098C187523126 @default.
- W3114429098 hasConceptScore W3114429098C2776881184 @default.
- W3114429098 hasConceptScore W3114429098C2777515770 @default.
- W3114429098 hasConceptScore W3114429098C2778216619 @default.
- W3114429098 hasConceptScore W3114429098C2778802602 @default.
- W3114429098 hasConceptScore W3114429098C2780214079 @default.
- W3114429098 hasConceptScore W3114429098C33923547 @default.
- W3114429098 hasConceptScore W3114429098C39920418 @default.
- W3114429098 hasConceptScore W3114429098C41008148 @default.
- W3114429098 hasConceptScore W3114429098C66938386 @default.
- W3114429098 hasConceptScore W3114429098C71924100 @default.
- W3114429098 hasConceptScore W3114429098C74650414 @default.
- W3114429098 hasConceptScore W3114429098C99508421 @default.
- W3114429098 hasFunder F4320306076 @default.
- W3114429098 hasFunder F4320306078 @default.
- W3114429098 hasIssue "4" @default.
- W3114429098 hasLocation W31144290981 @default.
- W3114429098 hasLocation W31144290982 @default.
- W3114429098 hasOpenAccess W3114429098 @default.
- W3114429098 hasPrimaryLocation W31144290981 @default.
- W3114429098 hasRelatedWork W1990312894 @default.
- W3114429098 hasRelatedWork W2000971831 @default.
- W3114429098 hasRelatedWork W2005603268 @default.
- W3114429098 hasRelatedWork W2070068172 @default.
- W3114429098 hasRelatedWork W2073801827 @default.