Matches in SemOpenAlex for { <https://semopenalex.org/work/W3114440810> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3114440810 endingPage "130" @default.
- W3114440810 startingPage "116" @default.
- W3114440810 abstract "This article provides an overview of fuzzy encoded Markov chains (FEMCs), which are finite-state Markov chains applied to transitions between fuzzy sets that encode signal or variable values. FEMCs can be used for modeling of dynamic systems, predicting/forecasting future signal values, for state estimation, and for the development of fuzzy rules for control. Under suitable assumptions, the state possibility distribution can be propagated using FEMC models in a similar manner as the state probability distribution using conventional Markov chain models. The article first discusses FEMC theory, procedures to identify FEMCs from data, and the use of FEMCs for forecasting and control. Then, we introduce, for the first time, observers for partially observable FEMCs. The observer theory is developed and computational approaches are presented. Finally, we briefly review some FEMC applications in the automotive domain." @default.
- W3114440810 created "2021-01-05" @default.
- W3114440810 creator A5015550681 @default.
- W3114440810 creator A5050595891 @default.
- W3114440810 creator A5074685221 @default.
- W3114440810 creator A5078022728 @default.
- W3114440810 date "2021-01-01" @default.
- W3114440810 modified "2023-10-14" @default.
- W3114440810 title "Fuzzy Encoded Markov Chains: Overview, Observer Theory, and Applications" @default.
- W3114440810 cites W1529021355 @default.
- W3114440810 cites W1892287825 @default.
- W3114440810 cites W189768814 @default.
- W3114440810 cites W1987801991 @default.
- W3114440810 cites W2007739724 @default.
- W3114440810 cites W2009023610 @default.
- W3114440810 cites W2020244582 @default.
- W3114440810 cites W2028492899 @default.
- W3114440810 cites W2038190934 @default.
- W3114440810 cites W2065900771 @default.
- W3114440810 cites W2081763828 @default.
- W3114440810 cites W2086860546 @default.
- W3114440810 cites W2088996369 @default.
- W3114440810 cites W2091698031 @default.
- W3114440810 cites W2098507785 @default.
- W3114440810 cites W2113824143 @default.
- W3114440810 cites W2125838338 @default.
- W3114440810 cites W2166704994 @default.
- W3114440810 cites W2168359464 @default.
- W3114440810 cites W2310706177 @default.
- W3114440810 cites W2570329088 @default.
- W3114440810 cites W2618149076 @default.
- W3114440810 cites W2621081626 @default.
- W3114440810 cites W2741746516 @default.
- W3114440810 cites W2794413559 @default.
- W3114440810 cites W2806832624 @default.
- W3114440810 cites W2885592855 @default.
- W3114440810 cites W2964635057 @default.
- W3114440810 cites W2971275317 @default.
- W3114440810 cites W2980023432 @default.
- W3114440810 cites W3004201898 @default.
- W3114440810 cites W4245264810 @default.
- W3114440810 cites W4251960031 @default.
- W3114440810 cites W808427616 @default.
- W3114440810 cites W90286923 @default.
- W3114440810 doi "https://doi.org/10.1109/tsmc.2020.3042960" @default.
- W3114440810 hasPublicationYear "2021" @default.
- W3114440810 type Work @default.
- W3114440810 sameAs 3114440810 @default.
- W3114440810 citedByCount "2" @default.
- W3114440810 countsByYear W31144408102022 @default.
- W3114440810 countsByYear W31144408102023 @default.
- W3114440810 crossrefType "journal-article" @default.
- W3114440810 hasAuthorship W3114440810A5015550681 @default.
- W3114440810 hasAuthorship W3114440810A5050595891 @default.
- W3114440810 hasAuthorship W3114440810A5074685221 @default.
- W3114440810 hasAuthorship W3114440810A5078022728 @default.
- W3114440810 hasBestOaLocation W31144408101 @default.
- W3114440810 hasConcept C119857082 @default.
- W3114440810 hasConcept C121332964 @default.
- W3114440810 hasConcept C154945302 @default.
- W3114440810 hasConcept C163836022 @default.
- W3114440810 hasConcept C2780704645 @default.
- W3114440810 hasConcept C41008148 @default.
- W3114440810 hasConcept C54907487 @default.
- W3114440810 hasConcept C58166 @default.
- W3114440810 hasConcept C62520636 @default.
- W3114440810 hasConcept C76408418 @default.
- W3114440810 hasConcept C98763669 @default.
- W3114440810 hasConceptScore W3114440810C119857082 @default.
- W3114440810 hasConceptScore W3114440810C121332964 @default.
- W3114440810 hasConceptScore W3114440810C154945302 @default.
- W3114440810 hasConceptScore W3114440810C163836022 @default.
- W3114440810 hasConceptScore W3114440810C2780704645 @default.
- W3114440810 hasConceptScore W3114440810C41008148 @default.
- W3114440810 hasConceptScore W3114440810C54907487 @default.
- W3114440810 hasConceptScore W3114440810C58166 @default.
- W3114440810 hasConceptScore W3114440810C62520636 @default.
- W3114440810 hasConceptScore W3114440810C76408418 @default.
- W3114440810 hasConceptScore W3114440810C98763669 @default.
- W3114440810 hasIssue "1" @default.
- W3114440810 hasLocation W31144408101 @default.
- W3114440810 hasOpenAccess W3114440810 @default.
- W3114440810 hasPrimaryLocation W31144408101 @default.
- W3114440810 hasRelatedWork W2017778405 @default.
- W3114440810 hasRelatedWork W2076656644 @default.
- W3114440810 hasRelatedWork W2168521977 @default.
- W3114440810 hasRelatedWork W2293264007 @default.
- W3114440810 hasRelatedWork W23237351 @default.
- W3114440810 hasRelatedWork W2328055495 @default.
- W3114440810 hasRelatedWork W2381356968 @default.
- W3114440810 hasRelatedWork W3023188449 @default.
- W3114440810 hasRelatedWork W4244911450 @default.
- W3114440810 hasRelatedWork W50519898 @default.
- W3114440810 hasVolume "51" @default.
- W3114440810 isParatext "false" @default.
- W3114440810 isRetracted "false" @default.
- W3114440810 magId "3114440810" @default.
- W3114440810 workType "article" @default.