Matches in SemOpenAlex for { <https://semopenalex.org/work/W3114454506> ?p ?o ?g. }
- W3114454506 abstract "The stock market is a dynamic and volatile platform which provides an environment for traders to invest and trade in shares. The price of a stock is dependent on numerous static and dynamic features. Predicting the future price of a particular company's stock can be extremely beneficial for traders. Seq2Seq modelling helps map an input sequence to an output sequence. In this paper, we propose a system to predict the future Open, High, Close, Low (OHCL) value of a stock using a Bi-Directional LSTM based Sequence to Sequence Modelling. Each OHCL price is an independent sequence and multitask learning helps map the interrelations between them. A multitask system is also proposed which uses sub tasks and shared tasks to model the prices. Stock prices of Tata Consumer Products Limited from the National Stock Exchange (NSE) of India is used. To evaluate the efficiency of the proposed systems, they are compared against various machine learning algorithms. The proposed Seq2Seq and multitask systems comfortably outperform the existing algorithms with RMSE values of 3.98 and 7.87 respectively." @default.
- W3114454506 created "2021-01-05" @default.
- W3114454506 creator A5024593697 @default.
- W3114454506 creator A5036264263 @default.
- W3114454506 creator A5040406386 @default.
- W3114454506 creator A5056734192 @default.
- W3114454506 date "2020-10-28" @default.
- W3114454506 modified "2023-10-05" @default.
- W3114454506 title "Stock Price Prediction using Bi-Directional LSTM based Sequence to Sequence Modeling and Multitask Learning" @default.
- W3114454506 cites W1820615296 @default.
- W3114454506 cites W2032771991 @default.
- W3114454506 cites W2283180757 @default.
- W3114454506 cites W2534129421 @default.
- W3114454506 cites W2735926531 @default.
- W3114454506 cites W2753709519 @default.
- W3114454506 cites W2784381726 @default.
- W3114454506 cites W2799635155 @default.
- W3114454506 cites W2801361534 @default.
- W3114454506 cites W2887555902 @default.
- W3114454506 cites W2892887357 @default.
- W3114454506 cites W2896398456 @default.
- W3114454506 cites W2899210042 @default.
- W3114454506 cites W2912312176 @default.
- W3114454506 cites W2914021226 @default.
- W3114454506 cites W2922268266 @default.
- W3114454506 cites W2946975908 @default.
- W3114454506 cites W2963222484 @default.
- W3114454506 cites W2965446444 @default.
- W3114454506 cites W2968831808 @default.
- W3114454506 cites W2972734229 @default.
- W3114454506 cites W2979835384 @default.
- W3114454506 cites W2990556314 @default.
- W3114454506 cites W2995608606 @default.
- W3114454506 cites W2999917590 @default.
- W3114454506 cites W3003157920 @default.
- W3114454506 cites W3006446123 @default.
- W3114454506 cites W3011387630 @default.
- W3114454506 cites W3014865388 @default.
- W3114454506 cites W3018768760 @default.
- W3114454506 cites W3021316104 @default.
- W3114454506 cites W3023736538 @default.
- W3114454506 cites W3025589790 @default.
- W3114454506 cites W3047180632 @default.
- W3114454506 cites W3049178721 @default.
- W3114454506 cites W3088223352 @default.
- W3114454506 cites W3105640742 @default.
- W3114454506 cites W4235037173 @default.
- W3114454506 cites W4238935001 @default.
- W3114454506 cites W4248439738 @default.
- W3114454506 cites W99151699 @default.
- W3114454506 doi "https://doi.org/10.1109/uemcon51285.2020.9298066" @default.
- W3114454506 hasPublicationYear "2020" @default.
- W3114454506 type Work @default.
- W3114454506 sameAs 3114454506 @default.
- W3114454506 citedByCount "11" @default.
- W3114454506 countsByYear W31144545062021 @default.
- W3114454506 countsByYear W31144545062022 @default.
- W3114454506 countsByYear W31144545062023 @default.
- W3114454506 crossrefType "proceedings-article" @default.
- W3114454506 hasAuthorship W3114454506A5024593697 @default.
- W3114454506 hasAuthorship W3114454506A5036264263 @default.
- W3114454506 hasAuthorship W3114454506A5040406386 @default.
- W3114454506 hasAuthorship W3114454506A5056734192 @default.
- W3114454506 hasConcept C10138342 @default.
- W3114454506 hasConcept C119857082 @default.
- W3114454506 hasConcept C127413603 @default.
- W3114454506 hasConcept C143724316 @default.
- W3114454506 hasConcept C151730666 @default.
- W3114454506 hasConcept C154945302 @default.
- W3114454506 hasConcept C162324750 @default.
- W3114454506 hasConcept C200870193 @default.
- W3114454506 hasConcept C204036174 @default.
- W3114454506 hasConcept C2778112365 @default.
- W3114454506 hasConcept C2988984586 @default.
- W3114454506 hasConcept C41008148 @default.
- W3114454506 hasConcept C54355233 @default.
- W3114454506 hasConcept C78519656 @default.
- W3114454506 hasConcept C86803240 @default.
- W3114454506 hasConceptScore W3114454506C10138342 @default.
- W3114454506 hasConceptScore W3114454506C119857082 @default.
- W3114454506 hasConceptScore W3114454506C127413603 @default.
- W3114454506 hasConceptScore W3114454506C143724316 @default.
- W3114454506 hasConceptScore W3114454506C151730666 @default.
- W3114454506 hasConceptScore W3114454506C154945302 @default.
- W3114454506 hasConceptScore W3114454506C162324750 @default.
- W3114454506 hasConceptScore W3114454506C200870193 @default.
- W3114454506 hasConceptScore W3114454506C204036174 @default.
- W3114454506 hasConceptScore W3114454506C2778112365 @default.
- W3114454506 hasConceptScore W3114454506C2988984586 @default.
- W3114454506 hasConceptScore W3114454506C41008148 @default.
- W3114454506 hasConceptScore W3114454506C54355233 @default.
- W3114454506 hasConceptScore W3114454506C78519656 @default.
- W3114454506 hasConceptScore W3114454506C86803240 @default.
- W3114454506 hasLocation W31144545061 @default.
- W3114454506 hasOpenAccess W3114454506 @default.
- W3114454506 hasPrimaryLocation W31144545061 @default.
- W3114454506 hasRelatedWork W2336775178 @default.
- W3114454506 hasRelatedWork W3135150992 @default.
- W3114454506 hasRelatedWork W3158596019 @default.
- W3114454506 hasRelatedWork W4223963273 @default.