Matches in SemOpenAlex for { <https://semopenalex.org/work/W3114578209> ?p ?o ?g. }
- W3114578209 endingPage "50" @default.
- W3114578209 startingPage "50" @default.
- W3114578209 abstract "In this paper, superpixel features and extended multi-attribute profiles (EMAPs) are embedded in a multiple kernel learning framework to simultaneously exploit the local and multiscale information in both spatial and spectral dimensions for hyperspectral image (HSI) classification. First, the original HSI is reduced to three principal components in the spectral domain using principal component analysis (PCA). Then, a fast and efficient segmentation algorithm named simple linear iterative clustering is utilized to segment the principal components into a certain number of superpixels. By setting different numbers of superpixels, a set of multiscale homogenous regional features is extracted. Based on those extracted superpixels and their first-order adjacent superpixels, EMAPs with multimodal features are extracted and embedded into the multiple kernel framework to generate different spatial and spectral kernels. Finally, a PCA-based kernel learning algorithm is used to learn an optimal kernel that contains multiscale and multimodal information. The experimental results on two well-known datasets validate the effectiveness and efficiency of the proposed method compared with several state-of-the-art HSI classifiers." @default.
- W3114578209 created "2021-01-05" @default.
- W3114578209 creator A5008770845 @default.
- W3114578209 creator A5034348483 @default.
- W3114578209 creator A5034536222 @default.
- W3114578209 creator A5053709863 @default.
- W3114578209 date "2020-12-25" @default.
- W3114578209 modified "2023-10-16" @default.
- W3114578209 title "Multiscale Adjacent Superpixel-Based Extended Multi-Attribute Profiles Embedded Multiple Kernel Learning Method for Hyperspectral Classification" @default.
- W3114578209 cites W1939429412 @default.
- W3114578209 cites W2052160904 @default.
- W3114578209 cites W2053842903 @default.
- W3114578209 cites W2118246710 @default.
- W3114578209 cites W2159070926 @default.
- W3114578209 cites W2164330327 @default.
- W3114578209 cites W2344173806 @default.
- W3114578209 cites W2345019888 @default.
- W3114578209 cites W2430546716 @default.
- W3114578209 cites W2500751094 @default.
- W3114578209 cites W2518897583 @default.
- W3114578209 cites W2603422184 @default.
- W3114578209 cites W2743255627 @default.
- W3114578209 cites W2757177965 @default.
- W3114578209 cites W2775507709 @default.
- W3114578209 cites W2777427437 @default.
- W3114578209 cites W2781745664 @default.
- W3114578209 cites W2782578088 @default.
- W3114578209 cites W2789884944 @default.
- W3114578209 cites W2790512519 @default.
- W3114578209 cites W2791006446 @default.
- W3114578209 cites W2791694551 @default.
- W3114578209 cites W2799390666 @default.
- W3114578209 cites W2802773224 @default.
- W3114578209 cites W2804809630 @default.
- W3114578209 cites W2809113079 @default.
- W3114578209 cites W2888270240 @default.
- W3114578209 cites W2889773939 @default.
- W3114578209 cites W2894763306 @default.
- W3114578209 cites W2896826789 @default.
- W3114578209 cites W2897199189 @default.
- W3114578209 cites W2902746003 @default.
- W3114578209 cites W2909232022 @default.
- W3114578209 cites W2929472605 @default.
- W3114578209 cites W2941785753 @default.
- W3114578209 cites W2946747211 @default.
- W3114578209 cites W2947104191 @default.
- W3114578209 cites W2948256530 @default.
- W3114578209 cites W2960241714 @default.
- W3114578209 cites W2969427715 @default.
- W3114578209 cites W2971007343 @default.
- W3114578209 cites W2972640674 @default.
- W3114578209 cites W2975536154 @default.
- W3114578209 cites W2980054274 @default.
- W3114578209 cites W2991916973 @default.
- W3114578209 cites W2994639710 @default.
- W3114578209 cites W2996291386 @default.
- W3114578209 cites W2997195386 @default.
- W3114578209 cites W3033237694 @default.
- W3114578209 cites W3040902738 @default.
- W3114578209 cites W3043248362 @default.
- W3114578209 cites W3046007115 @default.
- W3114578209 cites W3048631361 @default.
- W3114578209 cites W3052078203 @default.
- W3114578209 cites W3084882268 @default.
- W3114578209 cites W3086698591 @default.
- W3114578209 cites W3091030342 @default.
- W3114578209 cites W3101012758 @default.
- W3114578209 cites W3106090851 @default.
- W3114578209 doi "https://doi.org/10.3390/rs13010050" @default.
- W3114578209 hasPublicationYear "2020" @default.
- W3114578209 type Work @default.
- W3114578209 sameAs 3114578209 @default.
- W3114578209 citedByCount "1" @default.
- W3114578209 countsByYear W31145782092021 @default.
- W3114578209 crossrefType "journal-article" @default.
- W3114578209 hasAuthorship W3114578209A5008770845 @default.
- W3114578209 hasAuthorship W3114578209A5034348483 @default.
- W3114578209 hasAuthorship W3114578209A5034536222 @default.
- W3114578209 hasAuthorship W3114578209A5053709863 @default.
- W3114578209 hasBestOaLocation W31145782091 @default.
- W3114578209 hasConcept C114614502 @default.
- W3114578209 hasConcept C122280245 @default.
- W3114578209 hasConcept C12267149 @default.
- W3114578209 hasConcept C124504099 @default.
- W3114578209 hasConcept C153180895 @default.
- W3114578209 hasConcept C154945302 @default.
- W3114578209 hasConcept C159078339 @default.
- W3114578209 hasConcept C182335926 @default.
- W3114578209 hasConcept C27438332 @default.
- W3114578209 hasConcept C2776879701 @default.
- W3114578209 hasConcept C33923547 @default.
- W3114578209 hasConcept C41008148 @default.
- W3114578209 hasConcept C73555534 @default.
- W3114578209 hasConcept C74193536 @default.
- W3114578209 hasConcept C89600930 @default.
- W3114578209 hasConceptScore W3114578209C114614502 @default.
- W3114578209 hasConceptScore W3114578209C122280245 @default.
- W3114578209 hasConceptScore W3114578209C12267149 @default.