Matches in SemOpenAlex for { <https://semopenalex.org/work/W3114688077> ?p ?o ?g. }
- W3114688077 endingPage "153" @default.
- W3114688077 startingPage "129" @default.
- W3114688077 abstract "Multi-label feature selection has attracted much attention from researchers and can reduce the high dimensionality of multi-label data. Previous multi-label methods consider the importance of labels equal, as a result, they choose the discriminative features based on the entire label set. In fact, there exists a latent semantic structure in the label set. Specifically, labels can be sorted into some central topics and some subordinate topics. Features regarding central topics should be chosen first and the number of them should be chosen more. To this end, we first explore the latent semantic structure according to spectral clustering. The labels are abstracted into several clusters named central clusters and subordinate clusters. Second, the importance of features with respect to the labels in each cluster is scored. Finally, we obtain the feature subset based on both the scores of features and the type of clusters. Comprehensive experiments demonstrate the superiority of the proposed method against seven state-of-the-art multi-label feature selection methods on fourteen benchmark multi-label data sets." @default.
- W3114688077 created "2021-01-05" @default.
- W3114688077 creator A5027509451 @default.
- W3114688077 creator A5049385796 @default.
- W3114688077 creator A5088318593 @default.
- W3114688077 creator A5088360655 @default.
- W3114688077 date "2021-04-01" @default.
- W3114688077 modified "2023-10-16" @default.
- W3114688077 title "Multi-label feature selection based on the division of label topics" @default.
- W3114688077 cites W1970696760 @default.
- W3114688077 cites W1972401983 @default.
- W3114688077 cites W1992813404 @default.
- W3114688077 cites W2010262905 @default.
- W3114688077 cites W2044170702 @default.
- W3114688077 cites W2052684427 @default.
- W3114688077 cites W2063249739 @default.
- W3114688077 cites W2086465730 @default.
- W3114688077 cites W2090630554 @default.
- W3114688077 cites W2096086009 @default.
- W3114688077 cites W2114315281 @default.
- W3114688077 cites W2131273899 @default.
- W3114688077 cites W2132139283 @default.
- W3114688077 cites W2154053567 @default.
- W3114688077 cites W2156935079 @default.
- W3114688077 cites W2166840159 @default.
- W3114688077 cites W2176228818 @default.
- W3114688077 cites W2191800066 @default.
- W3114688077 cites W2470167798 @default.
- W3114688077 cites W2519969774 @default.
- W3114688077 cites W2569112930 @default.
- W3114688077 cites W2586598639 @default.
- W3114688077 cites W2594455805 @default.
- W3114688077 cites W2811296027 @default.
- W3114688077 cites W2898240335 @default.
- W3114688077 cites W2905467815 @default.
- W3114688077 cites W2948768062 @default.
- W3114688077 cites W2973358067 @default.
- W3114688077 cites W2978725006 @default.
- W3114688077 cites W2980604334 @default.
- W3114688077 cites W2992383290 @default.
- W3114688077 cites W2996966849 @default.
- W3114688077 cites W3000546628 @default.
- W3114688077 cites W3047822990 @default.
- W3114688077 cites W3087348787 @default.
- W3114688077 cites W4300430800 @default.
- W3114688077 cites W636917482 @default.
- W3114688077 doi "https://doi.org/10.1016/j.ins.2020.12.036" @default.
- W3114688077 hasPublicationYear "2021" @default.
- W3114688077 type Work @default.
- W3114688077 sameAs 3114688077 @default.
- W3114688077 citedByCount "19" @default.
- W3114688077 countsByYear W31146880772021 @default.
- W3114688077 countsByYear W31146880772022 @default.
- W3114688077 countsByYear W31146880772023 @default.
- W3114688077 crossrefType "journal-article" @default.
- W3114688077 hasAuthorship W3114688077A5027509451 @default.
- W3114688077 hasAuthorship W3114688077A5049385796 @default.
- W3114688077 hasAuthorship W3114688077A5088318593 @default.
- W3114688077 hasAuthorship W3114688077A5088360655 @default.
- W3114688077 hasConcept C111030470 @default.
- W3114688077 hasConcept C119857082 @default.
- W3114688077 hasConcept C124101348 @default.
- W3114688077 hasConcept C13280743 @default.
- W3114688077 hasConcept C138885662 @default.
- W3114688077 hasConcept C148483581 @default.
- W3114688077 hasConcept C153180895 @default.
- W3114688077 hasConcept C154945302 @default.
- W3114688077 hasConcept C177264268 @default.
- W3114688077 hasConcept C185798385 @default.
- W3114688077 hasConcept C199360897 @default.
- W3114688077 hasConcept C205649164 @default.
- W3114688077 hasConcept C2776401178 @default.
- W3114688077 hasConcept C2776482837 @default.
- W3114688077 hasConcept C41008148 @default.
- W3114688077 hasConcept C41895202 @default.
- W3114688077 hasConcept C73555534 @default.
- W3114688077 hasConcept C81917197 @default.
- W3114688077 hasConcept C97931131 @default.
- W3114688077 hasConceptScore W3114688077C111030470 @default.
- W3114688077 hasConceptScore W3114688077C119857082 @default.
- W3114688077 hasConceptScore W3114688077C124101348 @default.
- W3114688077 hasConceptScore W3114688077C13280743 @default.
- W3114688077 hasConceptScore W3114688077C138885662 @default.
- W3114688077 hasConceptScore W3114688077C148483581 @default.
- W3114688077 hasConceptScore W3114688077C153180895 @default.
- W3114688077 hasConceptScore W3114688077C154945302 @default.
- W3114688077 hasConceptScore W3114688077C177264268 @default.
- W3114688077 hasConceptScore W3114688077C185798385 @default.
- W3114688077 hasConceptScore W3114688077C199360897 @default.
- W3114688077 hasConceptScore W3114688077C205649164 @default.
- W3114688077 hasConceptScore W3114688077C2776401178 @default.
- W3114688077 hasConceptScore W3114688077C2776482837 @default.
- W3114688077 hasConceptScore W3114688077C41008148 @default.
- W3114688077 hasConceptScore W3114688077C41895202 @default.
- W3114688077 hasConceptScore W3114688077C73555534 @default.
- W3114688077 hasConceptScore W3114688077C81917197 @default.
- W3114688077 hasConceptScore W3114688077C97931131 @default.
- W3114688077 hasLocation W31146880771 @default.