Matches in SemOpenAlex for { <https://semopenalex.org/work/W3114692783> ?p ?o ?g. }
- W3114692783 abstract "Automatic identification of debris flow signals in continuous seismic records remains a challenge. To tackle this problem, we use machine learning, which can be applied to continuous real-time data. We show that a machine learning model based on the random forest algorithm recognizes different stages of debris flow formation and propagation at the Illgraben torrent, Switzerland, with an accuracy exceeding 90 %. In contrast to typical debris flow detection requiring instrumentation installed in the torrent, our approach provides a significant gain in warning times of tens of minutes to hours. For real-time data from 2020, our detector raises alarms for all 13 independently confirmed Illgraben events, giving no false alarms. We suggest that our seismic machine-learning detector is a critical step toward the next generation of debris-flow warning, which increases warning times using simpler instrumentation compared to existing operational systems." @default.
- W3114692783 created "2021-01-05" @default.
- W3114692783 creator A5011085411 @default.
- W3114692783 creator A5021458018 @default.
- W3114692783 creator A5028584708 @default.
- W3114692783 creator A5043575239 @default.
- W3114692783 creator A5056670177 @default.
- W3114692783 creator A5068986999 @default.
- W3114692783 date "2021-02-05" @default.
- W3114692783 modified "2023-10-16" @default.
- W3114692783 title "Machine Learning Improves Debris Flow Warning" @default.
- W3114692783 cites W1497184485 @default.
- W3114692783 cites W1535210484 @default.
- W3114692783 cites W1575929612 @default.
- W3114692783 cites W1969711429 @default.
- W3114692783 cites W1976193075 @default.
- W3114692783 cites W1978899134 @default.
- W3114692783 cites W1990984169 @default.
- W3114692783 cites W1991228102 @default.
- W3114692783 cites W2024556731 @default.
- W3114692783 cites W2028870122 @default.
- W3114692783 cites W2062258157 @default.
- W3114692783 cites W2063080203 @default.
- W3114692783 cites W2074019336 @default.
- W3114692783 cites W2084432499 @default.
- W3114692783 cites W2085867709 @default.
- W3114692783 cites W2097033979 @default.
- W3114692783 cites W2125945977 @default.
- W3114692783 cites W2127012547 @default.
- W3114692783 cites W2167636384 @default.
- W3114692783 cites W2324293977 @default.
- W3114692783 cites W2467076941 @default.
- W3114692783 cites W2560194956 @default.
- W3114692783 cites W2594559052 @default.
- W3114692783 cites W2608518078 @default.
- W3114692783 cites W2699947549 @default.
- W3114692783 cites W2803444594 @default.
- W3114692783 cites W2807648394 @default.
- W3114692783 cites W2891165789 @default.
- W3114692783 cites W2904203221 @default.
- W3114692783 cites W2911964244 @default.
- W3114692783 cites W2912249945 @default.
- W3114692783 cites W2944285166 @default.
- W3114692783 cites W2948794624 @default.
- W3114692783 cites W2964052309 @default.
- W3114692783 cites W2981386717 @default.
- W3114692783 cites W3033705635 @default.
- W3114692783 cites W3047855151 @default.
- W3114692783 cites W3112033697 @default.
- W3114692783 cites W3124928229 @default.
- W3114692783 cites W4235522870 @default.
- W3114692783 cites W4244341121 @default.
- W3114692783 doi "https://doi.org/10.1029/2020gl090874" @default.
- W3114692783 hasPublicationYear "2021" @default.
- W3114692783 type Work @default.
- W3114692783 sameAs 3114692783 @default.
- W3114692783 citedByCount "26" @default.
- W3114692783 countsByYear W31146927832021 @default.
- W3114692783 countsByYear W31146927832022 @default.
- W3114692783 countsByYear W31146927832023 @default.
- W3114692783 crossrefType "journal-article" @default.
- W3114692783 hasAuthorship W3114692783A5011085411 @default.
- W3114692783 hasAuthorship W3114692783A5021458018 @default.
- W3114692783 hasAuthorship W3114692783A5028584708 @default.
- W3114692783 hasAuthorship W3114692783A5043575239 @default.
- W3114692783 hasAuthorship W3114692783A5056670177 @default.
- W3114692783 hasAuthorship W3114692783A5068986999 @default.
- W3114692783 hasBestOaLocation W31146927831 @default.
- W3114692783 hasConcept C111368507 @default.
- W3114692783 hasConcept C111919701 @default.
- W3114692783 hasConcept C116834253 @default.
- W3114692783 hasConcept C118530786 @default.
- W3114692783 hasConcept C119857082 @default.
- W3114692783 hasConcept C127313418 @default.
- W3114692783 hasConcept C154945302 @default.
- W3114692783 hasConcept C2776023875 @default.
- W3114692783 hasConcept C2776643431 @default.
- W3114692783 hasConcept C29825287 @default.
- W3114692783 hasConcept C41008148 @default.
- W3114692783 hasConcept C59822182 @default.
- W3114692783 hasConcept C76155785 @default.
- W3114692783 hasConcept C79403827 @default.
- W3114692783 hasConcept C86803240 @default.
- W3114692783 hasConcept C94915269 @default.
- W3114692783 hasConceptScore W3114692783C111368507 @default.
- W3114692783 hasConceptScore W3114692783C111919701 @default.
- W3114692783 hasConceptScore W3114692783C116834253 @default.
- W3114692783 hasConceptScore W3114692783C118530786 @default.
- W3114692783 hasConceptScore W3114692783C119857082 @default.
- W3114692783 hasConceptScore W3114692783C127313418 @default.
- W3114692783 hasConceptScore W3114692783C154945302 @default.
- W3114692783 hasConceptScore W3114692783C2776023875 @default.
- W3114692783 hasConceptScore W3114692783C2776643431 @default.
- W3114692783 hasConceptScore W3114692783C29825287 @default.
- W3114692783 hasConceptScore W3114692783C41008148 @default.
- W3114692783 hasConceptScore W3114692783C59822182 @default.
- W3114692783 hasConceptScore W3114692783C76155785 @default.
- W3114692783 hasConceptScore W3114692783C79403827 @default.
- W3114692783 hasConceptScore W3114692783C86803240 @default.
- W3114692783 hasConceptScore W3114692783C94915269 @default.