Matches in SemOpenAlex for { <https://semopenalex.org/work/W3114698727> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3114698727 endingPage "065201" @default.
- W3114698727 startingPage "065201" @default.
- W3114698727 abstract "Abstract Measurements of technical objects can be done with contact and non-contact approaches. Contact methods are accurate but slow. On the other hand, non-contact methods deliver rapid point acquisition and are increasingly being used as their precision mounts. However, multiple scanning parameters such as the incident angle, object colour and scanning distance influence the measurement error and uncertainty when capturing the geometry of the object. With the aim of creating a generalised model that considers the influence of the aforementioned scanning parameters with satisfactory accuracy, a model for predicting the random measurement error based on machine learning (ML) is proposed in this study. Data acquired from measurements with varying scanning distances, incident angles and surface colours were used to train ML models. The tested ML methods included linear regression, support vector machine, neural network, k-nearest neighbour, AdaBoost and random forest. The best-performing trained model was the random forest, with a standard deviation of relative differences of 1.46% for the case of red surfaces, and 5.2% for the case of an arbitrarily coloured surface, which is comparable to results achieved with model-based methods. The trained models and the data are available online." @default.
- W3114698727 created "2021-01-05" @default.
- W3114698727 creator A5018746207 @default.
- W3114698727 creator A5053635097 @default.
- W3114698727 creator A5073674339 @default.
- W3114698727 date "2021-03-29" @default.
- W3114698727 modified "2023-10-12" @default.
- W3114698727 title "Machine learning method for predicting the influence of scanning parameters on random measurement error" @default.
- W3114698727 cites W1598172960 @default.
- W3114698727 cites W1741121255 @default.
- W3114698727 cites W1889821550 @default.
- W3114698727 cites W1978883191 @default.
- W3114698727 cites W1993573975 @default.
- W3114698727 cites W2028574679 @default.
- W3114698727 cites W2073117242 @default.
- W3114698727 cites W2079199090 @default.
- W3114698727 cites W2108171738 @default.
- W3114698727 cites W2476760014 @default.
- W3114698727 cites W2516236928 @default.
- W3114698727 cites W2562378388 @default.
- W3114698727 cites W2611819392 @default.
- W3114698727 cites W2616769935 @default.
- W3114698727 cites W2736556587 @default.
- W3114698727 cites W2801861716 @default.
- W3114698727 cites W2950121422 @default.
- W3114698727 cites W2978430608 @default.
- W3114698727 cites W3009320838 @default.
- W3114698727 cites W3092038399 @default.
- W3114698727 cites W344357349 @default.
- W3114698727 doi "https://doi.org/10.1088/1361-6501/abd57a" @default.
- W3114698727 hasPublicationYear "2021" @default.
- W3114698727 type Work @default.
- W3114698727 sameAs 3114698727 @default.
- W3114698727 citedByCount "3" @default.
- W3114698727 countsByYear W31146987272021 @default.
- W3114698727 countsByYear W31146987272022 @default.
- W3114698727 countsByYear W31146987272023 @default.
- W3114698727 crossrefType "journal-article" @default.
- W3114698727 hasAuthorship W3114698727A5018746207 @default.
- W3114698727 hasAuthorship W3114698727A5053635097 @default.
- W3114698727 hasAuthorship W3114698727A5073674339 @default.
- W3114698727 hasBestOaLocation W31146987271 @default.
- W3114698727 hasConcept C105795698 @default.
- W3114698727 hasConcept C11413529 @default.
- W3114698727 hasConcept C119857082 @default.
- W3114698727 hasConcept C12267149 @default.
- W3114698727 hasConcept C141404830 @default.
- W3114698727 hasConcept C153180895 @default.
- W3114698727 hasConcept C154945302 @default.
- W3114698727 hasConcept C169258074 @default.
- W3114698727 hasConcept C22679943 @default.
- W3114698727 hasConcept C2524010 @default.
- W3114698727 hasConcept C28719098 @default.
- W3114698727 hasConcept C33923547 @default.
- W3114698727 hasConcept C41008148 @default.
- W3114698727 hasConcept C50644808 @default.
- W3114698727 hasConceptScore W3114698727C105795698 @default.
- W3114698727 hasConceptScore W3114698727C11413529 @default.
- W3114698727 hasConceptScore W3114698727C119857082 @default.
- W3114698727 hasConceptScore W3114698727C12267149 @default.
- W3114698727 hasConceptScore W3114698727C141404830 @default.
- W3114698727 hasConceptScore W3114698727C153180895 @default.
- W3114698727 hasConceptScore W3114698727C154945302 @default.
- W3114698727 hasConceptScore W3114698727C169258074 @default.
- W3114698727 hasConceptScore W3114698727C22679943 @default.
- W3114698727 hasConceptScore W3114698727C2524010 @default.
- W3114698727 hasConceptScore W3114698727C28719098 @default.
- W3114698727 hasConceptScore W3114698727C33923547 @default.
- W3114698727 hasConceptScore W3114698727C41008148 @default.
- W3114698727 hasConceptScore W3114698727C50644808 @default.
- W3114698727 hasFunder F4320322554 @default.
- W3114698727 hasIssue "6" @default.
- W3114698727 hasLocation W31146987271 @default.
- W3114698727 hasOpenAccess W3114698727 @default.
- W3114698727 hasPrimaryLocation W31146987271 @default.
- W3114698727 hasRelatedWork W1996541855 @default.
- W3114698727 hasRelatedWork W2911198546 @default.
- W3114698727 hasRelatedWork W2979979539 @default.
- W3114698727 hasRelatedWork W3195168932 @default.
- W3114698727 hasRelatedWork W3204641204 @default.
- W3114698727 hasRelatedWork W3217110323 @default.
- W3114698727 hasRelatedWork W4205958290 @default.
- W3114698727 hasRelatedWork W4249229055 @default.
- W3114698727 hasRelatedWork W4282839226 @default.
- W3114698727 hasRelatedWork W4320483443 @default.
- W3114698727 hasVolume "32" @default.
- W3114698727 isParatext "false" @default.
- W3114698727 isRetracted "false" @default.
- W3114698727 magId "3114698727" @default.
- W3114698727 workType "article" @default.