Matches in SemOpenAlex for { <https://semopenalex.org/work/W3114782012> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3114782012 abstract "Epilepsy is a neurological disease that is very common worldwide. In the literature, patient’s electroencephalography (EEG) signals are frequently used for an epilepsy diagnosis. However, the success of epileptic examination procedures from quantitative EEG signals is limited. In this paper, a high-resolution time-frequency (TF) representation called Synchrosqueezed Transform (SST) is used to classify epileptic EEG signals. The SST matrices of seizure and pre-seizure EEG data of 16 epilepsy patients are calculated. Two approaches based on machine learning and deep learning are proposed to classify pre-seizure and seizure signals. In the machine learning-based approach, the various features like higher-order joint moments are calculated and these features are classified by Support Vector Machine (SVM), k-Nearest Neighbor (kNN) and Naive Bayes (NB) classifiers. In the deep learning-based approach, the SST matrix was recorded as an image and a Convolutional Neural Network (CNN)-based architecture was used to classify these images. Simulation results demonstrate that both approaches achieved promising validation accuracy rates. While the maximum (90.2%) validation accuracy is achieved for the machine learning-based approach, (90.3%) validation accuracy is achieved for the deep learning-based approach." @default.
- W3114782012 created "2021-01-05" @default.
- W3114782012 creator A5012672901 @default.
- W3114782012 creator A5043963300 @default.
- W3114782012 creator A5088292562 @default.
- W3114782012 date "2021-01-24" @default.
- W3114782012 modified "2023-09-24" @default.
- W3114782012 title "Epileptic EEG Classification Using Synchrosqueezing Transform with Machine and Deep Learning Techniques" @default.
- W3114782012 cites W2081146518 @default.
- W3114782012 cites W2742472784 @default.
- W3114782012 cites W2754962589 @default.
- W3114782012 cites W2809254203 @default.
- W3114782012 cites W2899586412 @default.
- W3114782012 cites W2910136977 @default.
- W3114782012 cites W2914978058 @default.
- W3114782012 cites W2985003680 @default.
- W3114782012 cites W2990035072 @default.
- W3114782012 cites W2990238942 @default.
- W3114782012 cites W2995435729 @default.
- W3114782012 cites W2999385394 @default.
- W3114782012 cites W3001901462 @default.
- W3114782012 cites W3003074332 @default.
- W3114782012 cites W3006129733 @default.
- W3114782012 cites W3007241070 @default.
- W3114782012 cites W3011154529 @default.
- W3114782012 doi "https://doi.org/10.23919/eusipco47968.2020.9287347" @default.
- W3114782012 hasPublicationYear "2021" @default.
- W3114782012 type Work @default.
- W3114782012 sameAs 3114782012 @default.
- W3114782012 citedByCount "1" @default.
- W3114782012 countsByYear W31147820122023 @default.
- W3114782012 crossrefType "proceedings-article" @default.
- W3114782012 hasAuthorship W3114782012A5012672901 @default.
- W3114782012 hasAuthorship W3114782012A5043963300 @default.
- W3114782012 hasAuthorship W3114782012A5088292562 @default.
- W3114782012 hasConcept C108583219 @default.
- W3114782012 hasConcept C118552586 @default.
- W3114782012 hasConcept C119857082 @default.
- W3114782012 hasConcept C12267149 @default.
- W3114782012 hasConcept C153180895 @default.
- W3114782012 hasConcept C154945302 @default.
- W3114782012 hasConcept C15744967 @default.
- W3114782012 hasConcept C169760540 @default.
- W3114782012 hasConcept C27181475 @default.
- W3114782012 hasConcept C2778186239 @default.
- W3114782012 hasConcept C2779334592 @default.
- W3114782012 hasConcept C41008148 @default.
- W3114782012 hasConcept C50644808 @default.
- W3114782012 hasConcept C52001869 @default.
- W3114782012 hasConcept C522805319 @default.
- W3114782012 hasConcept C52622490 @default.
- W3114782012 hasConcept C81363708 @default.
- W3114782012 hasConceptScore W3114782012C108583219 @default.
- W3114782012 hasConceptScore W3114782012C118552586 @default.
- W3114782012 hasConceptScore W3114782012C119857082 @default.
- W3114782012 hasConceptScore W3114782012C12267149 @default.
- W3114782012 hasConceptScore W3114782012C153180895 @default.
- W3114782012 hasConceptScore W3114782012C154945302 @default.
- W3114782012 hasConceptScore W3114782012C15744967 @default.
- W3114782012 hasConceptScore W3114782012C169760540 @default.
- W3114782012 hasConceptScore W3114782012C27181475 @default.
- W3114782012 hasConceptScore W3114782012C2778186239 @default.
- W3114782012 hasConceptScore W3114782012C2779334592 @default.
- W3114782012 hasConceptScore W3114782012C41008148 @default.
- W3114782012 hasConceptScore W3114782012C50644808 @default.
- W3114782012 hasConceptScore W3114782012C52001869 @default.
- W3114782012 hasConceptScore W3114782012C522805319 @default.
- W3114782012 hasConceptScore W3114782012C52622490 @default.
- W3114782012 hasConceptScore W3114782012C81363708 @default.
- W3114782012 hasLocation W31147820121 @default.
- W3114782012 hasOpenAccess W3114782012 @default.
- W3114782012 hasPrimaryLocation W31147820121 @default.
- W3114782012 hasRelatedWork W2068539145 @default.
- W3114782012 hasRelatedWork W2098577099 @default.
- W3114782012 hasRelatedWork W2126100045 @default.
- W3114782012 hasRelatedWork W2279398222 @default.
- W3114782012 hasRelatedWork W2406522397 @default.
- W3114782012 hasRelatedWork W2732542196 @default.
- W3114782012 hasRelatedWork W3136979370 @default.
- W3114782012 hasRelatedWork W3193301557 @default.
- W3114782012 hasRelatedWork W4205958290 @default.
- W3114782012 hasRelatedWork W4253879228 @default.
- W3114782012 isParatext "false" @default.
- W3114782012 isRetracted "false" @default.
- W3114782012 magId "3114782012" @default.
- W3114782012 workType "article" @default.