Matches in SemOpenAlex for { <https://semopenalex.org/work/W3114789653> ?p ?o ?g. }
- W3114789653 endingPage "17468" @default.
- W3114789653 startingPage "17455" @default.
- W3114789653 abstract "Plant diseases cause losses to agricultural production and hence, the economy. This necessitates a need to develop prediction models for the plant disease detection and assessment. Fungal infection, the most dominant disease, can be controlled by taking appropriate measures if detected at an early stage. The article aims to develop an expert system for the prediction of various fungal diseases (powdery mildew, anthracnose, rust, and root rot/leaf blight). A multi-layered perceptron model is used for the classification of the diseases which not only detects the plant diseases effectively but can also increase the production drastically. The proposed technique incorporates three significant steps of dataset pre-processing, exploratory data analysis, and detection module. Firstly, the real-time data is captured by the soil sensors system installed at agriculture field at Sardarkrushinagar Dantiwada Agricultural University, Gujarat, India, along with the satellite data for other micro-meteorological factors. Next, an extensive exploratory data analysis has been performed to get insights into the collected data. Finally, the proposed machine learning model has been employed to predict plant diseases. The experimental results indicate that the model outperforms several existing methods in terms of accuracy. Average accuracy in predicting each disease has been found more than 98%. This work also proves the feasibility of using this technique for faster plant disease detection at an affordable cost." @default.
- W3114789653 created "2021-01-05" @default.
- W3114789653 creator A5018728658 @default.
- W3114789653 creator A5026670559 @default.
- W3114789653 creator A5045050884 @default.
- W3114789653 date "2021-08-15" @default.
- W3114789653 modified "2023-10-16" @default.
- W3114789653 title "Soil Sensors-Based Prediction System for Plant Diseases Using Exploratory Data Analysis and Machine Learning" @default.
- W3114789653 cites W1843256411 @default.
- W3114789653 cites W1938887115 @default.
- W3114789653 cites W1964684327 @default.
- W3114789653 cites W1975778971 @default.
- W3114789653 cites W2011301426 @default.
- W3114789653 cites W2031772235 @default.
- W3114789653 cites W2053562069 @default.
- W3114789653 cites W2068542709 @default.
- W3114789653 cites W2080774957 @default.
- W3114789653 cites W2082436271 @default.
- W3114789653 cites W2086293235 @default.
- W3114789653 cites W2087794098 @default.
- W3114789653 cites W2108651704 @default.
- W3114789653 cites W2122325761 @default.
- W3114789653 cites W2132518522 @default.
- W3114789653 cites W2147845607 @default.
- W3114789653 cites W2149369033 @default.
- W3114789653 cites W2170942320 @default.
- W3114789653 cites W2243330830 @default.
- W3114789653 cites W2343050942 @default.
- W3114789653 cites W2517946956 @default.
- W3114789653 cites W2618530766 @default.
- W3114789653 cites W2758893285 @default.
- W3114789653 cites W2792362452 @default.
- W3114789653 cites W2799848215 @default.
- W3114789653 cites W2806576037 @default.
- W3114789653 cites W2808709127 @default.
- W3114789653 cites W2809045324 @default.
- W3114789653 cites W2884303771 @default.
- W3114789653 cites W2886590014 @default.
- W3114789653 cites W2891667148 @default.
- W3114789653 cites W2947711570 @default.
- W3114789653 cites W2952954676 @default.
- W3114789653 cites W2967553555 @default.
- W3114789653 cites W2973189696 @default.
- W3114789653 cites W2979336911 @default.
- W3114789653 cites W2982381523 @default.
- W3114789653 cites W3005607320 @default.
- W3114789653 cites W3010184667 @default.
- W3114789653 cites W3103145119 @default.
- W3114789653 cites W837190402 @default.
- W3114789653 doi "https://doi.org/10.1109/jsen.2020.3046295" @default.
- W3114789653 hasPublicationYear "2021" @default.
- W3114789653 type Work @default.
- W3114789653 sameAs 3114789653 @default.
- W3114789653 citedByCount "44" @default.
- W3114789653 countsByYear W31147896532021 @default.
- W3114789653 countsByYear W31147896532022 @default.
- W3114789653 countsByYear W31147896532023 @default.
- W3114789653 crossrefType "journal-article" @default.
- W3114789653 hasAuthorship W3114789653A5018728658 @default.
- W3114789653 hasAuthorship W3114789653A5026670559 @default.
- W3114789653 hasAuthorship W3114789653A5045050884 @default.
- W3114789653 hasConcept C118518473 @default.
- W3114789653 hasConcept C119857082 @default.
- W3114789653 hasConcept C120217122 @default.
- W3114789653 hasConcept C124101348 @default.
- W3114789653 hasConcept C127413603 @default.
- W3114789653 hasConcept C150903083 @default.
- W3114789653 hasConcept C154945302 @default.
- W3114789653 hasConcept C179717631 @default.
- W3114789653 hasConcept C182076605 @default.
- W3114789653 hasConcept C18903297 @default.
- W3114789653 hasConcept C2779336322 @default.
- W3114789653 hasConcept C3019235130 @default.
- W3114789653 hasConcept C41008148 @default.
- W3114789653 hasConcept C50644808 @default.
- W3114789653 hasConcept C6557445 @default.
- W3114789653 hasConcept C86803240 @default.
- W3114789653 hasConcept C88463610 @default.
- W3114789653 hasConceptScore W3114789653C118518473 @default.
- W3114789653 hasConceptScore W3114789653C119857082 @default.
- W3114789653 hasConceptScore W3114789653C120217122 @default.
- W3114789653 hasConceptScore W3114789653C124101348 @default.
- W3114789653 hasConceptScore W3114789653C127413603 @default.
- W3114789653 hasConceptScore W3114789653C150903083 @default.
- W3114789653 hasConceptScore W3114789653C154945302 @default.
- W3114789653 hasConceptScore W3114789653C179717631 @default.
- W3114789653 hasConceptScore W3114789653C182076605 @default.
- W3114789653 hasConceptScore W3114789653C18903297 @default.
- W3114789653 hasConceptScore W3114789653C2779336322 @default.
- W3114789653 hasConceptScore W3114789653C3019235130 @default.
- W3114789653 hasConceptScore W3114789653C41008148 @default.
- W3114789653 hasConceptScore W3114789653C50644808 @default.
- W3114789653 hasConceptScore W3114789653C6557445 @default.
- W3114789653 hasConceptScore W3114789653C86803240 @default.
- W3114789653 hasConceptScore W3114789653C88463610 @default.
- W3114789653 hasFunder F4320326716 @default.
- W3114789653 hasIssue "16" @default.
- W3114789653 hasLocation W31147896531 @default.