Matches in SemOpenAlex for { <https://semopenalex.org/work/W3115048944> ?p ?o ?g. }
- W3115048944 endingPage "372" @default.
- W3115048944 startingPage "360" @default.
- W3115048944 abstract "Coating with hydroxyapatite (HAP) presents a mainstream strategy for rendering bioinert titanium implants bioactive. However, the low porosity of pure HAP coatings does not allow for the infiltration of the surface of the metallic implant with the host cells. Polymeric scaffolds do enable this osseointegration effect, but their bonding onto titanium presents a challenge because of the disparity in hydrophilicity. Here, we demonstrate the inability of a composite scaffold composed of carbonated HAP (CHAP) nanoparticles interspersed within electrospun ε-polycaprolactone (PCL) nanofibers to bind onto titanium. To solve this challenge, an intermediate layer of graphene nanosheets was deposited in a pulsed laser deposition process, which facilitated the bonding of the scaffold. The duration of the deposition of graphene (0, 5, 10, 15, and 20 min) and the thickness of its mesolayer affected numerous physical and chemical properties of the material, including the surface atomic proportion of carbon bonds, the orientation and interlinking of the polymeric nanofibers, and the surface roughness, which increased in direct proportion with the thickness of the graphene mesolayer. Because the polymeric scaffold did not adhere onto the surface of pure titanium, no cells were detected growing on it in vitro. In contrast, human fibroblasts adhered, spread, and proliferated well on all the substrates sputtered with both graphene and the composite scaffold. The orientations of cytoskeletal filopodia and lamellipodia were largely determined by the topographic orientation of the nanofibers and the geometry of the surface pores, attesting to the important effects that the presence of a scaffold has on the cellular behavior. The protection of titanium from corrosion in the simulated body fluid (SBF) was enhanced by coating with graphene and the composite scaffold, with the most superior resistance to the attack of the corrosive ions being exhibited by the substrate subjected to the shortest duration of the graphene deposition because of the highest atomic ratio of C–C to C–O bonds detected in it. Overall, some properties of titanium, such as roughness and wettability, were improved monotonously with an increase in the thickness of the graphene mesolayer, while others, such as cell viability and resistance to corrosion, required optimization, given that they were diminished at higher graphene mesolayer thicknesses. Nevertheless, every physical and chemical property of titanium analyzed was significantly improved by coating with graphene and the composite scaffold. This type of multilayer design evidently holds a great promise in the design of biomaterials for implants in orthopedics and tissue engineering." @default.
- W3115048944 created "2021-01-05" @default.
- W3115048944 creator A5012522960 @default.
- W3115048944 creator A5033628717 @default.
- W3115048944 creator A5047769327 @default.
- W3115048944 creator A5085273471 @default.
- W3115048944 creator A5085360112 @default.
- W3115048944 date "2020-12-18" @default.
- W3115048944 modified "2023-09-30" @default.
- W3115048944 title "Taking Hydroxyapatite-Coated Titanium Implants Two Steps Forward: Surface Modification Using Graphene Mesolayers and a Hydroxyapatite-Reinforced Polymeric Scaffold" @default.
- W3115048944 cites W1981417968 @default.
- W3115048944 cites W1998679979 @default.
- W3115048944 cites W2000064643 @default.
- W3115048944 cites W2028846632 @default.
- W3115048944 cites W2166682277 @default.
- W3115048944 cites W2338197221 @default.
- W3115048944 cites W2516169683 @default.
- W3115048944 cites W2578935476 @default.
- W3115048944 cites W2591760892 @default.
- W3115048944 cites W2762480232 @default.
- W3115048944 cites W2789827751 @default.
- W3115048944 cites W2790044190 @default.
- W3115048944 cites W2795419113 @default.
- W3115048944 cites W2803903705 @default.
- W3115048944 cites W2890714124 @default.
- W3115048944 cites W2894555078 @default.
- W3115048944 cites W2896788635 @default.
- W3115048944 cites W2898978697 @default.
- W3115048944 cites W2908715923 @default.
- W3115048944 cites W2910014151 @default.
- W3115048944 cites W2910128922 @default.
- W3115048944 cites W2912439046 @default.
- W3115048944 cites W2914327469 @default.
- W3115048944 cites W2945915097 @default.
- W3115048944 cites W2948929089 @default.
- W3115048944 cites W2963645953 @default.
- W3115048944 cites W2965298789 @default.
- W3115048944 cites W2967476087 @default.
- W3115048944 cites W2971889793 @default.
- W3115048944 cites W2979763561 @default.
- W3115048944 cites W2984646659 @default.
- W3115048944 cites W2986173044 @default.
- W3115048944 cites W2986520938 @default.
- W3115048944 cites W2986607160 @default.
- W3115048944 cites W2987142692 @default.
- W3115048944 cites W2987168385 @default.
- W3115048944 cites W2989528167 @default.
- W3115048944 cites W2991522140 @default.
- W3115048944 cites W2994643705 @default.
- W3115048944 cites W2995752595 @default.
- W3115048944 cites W2996390480 @default.
- W3115048944 cites W2996837643 @default.
- W3115048944 cites W2997389385 @default.
- W3115048944 cites W2999022354 @default.
- W3115048944 cites W3004798244 @default.
- W3115048944 cites W3005171220 @default.
- W3115048944 cites W3009426164 @default.
- W3115048944 cites W3009581077 @default.
- W3115048944 cites W3009921221 @default.
- W3115048944 cites W3010087369 @default.
- W3115048944 cites W3011468229 @default.
- W3115048944 cites W3011770981 @default.
- W3115048944 cites W3012018399 @default.
- W3115048944 cites W3016221254 @default.
- W3115048944 cites W3017959600 @default.
- W3115048944 doi "https://doi.org/10.1021/acsbiomaterials.0c01105" @default.
- W3115048944 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33337854" @default.
- W3115048944 hasPublicationYear "2020" @default.
- W3115048944 type Work @default.
- W3115048944 sameAs 3115048944 @default.
- W3115048944 citedByCount "33" @default.
- W3115048944 countsByYear W31150489442021 @default.
- W3115048944 countsByYear W31150489442022 @default.
- W3115048944 countsByYear W31150489442023 @default.
- W3115048944 crossrefType "journal-article" @default.
- W3115048944 hasAuthorship W3115048944A5012522960 @default.
- W3115048944 hasAuthorship W3115048944A5033628717 @default.
- W3115048944 hasAuthorship W3115048944A5047769327 @default.
- W3115048944 hasAuthorship W3115048944A5085273471 @default.
- W3115048944 hasAuthorship W3115048944A5085360112 @default.
- W3115048944 hasConcept C101414908 @default.
- W3115048944 hasConcept C115537861 @default.
- W3115048944 hasConcept C127413603 @default.
- W3115048944 hasConcept C136229726 @default.
- W3115048944 hasConcept C141071460 @default.
- W3115048944 hasConcept C159985019 @default.
- W3115048944 hasConcept C171250308 @default.
- W3115048944 hasConcept C191897082 @default.
- W3115048944 hasConcept C192562407 @default.
- W3115048944 hasConcept C2777230088 @default.
- W3115048944 hasConcept C2777803738 @default.
- W3115048944 hasConcept C2781411149 @default.
- W3115048944 hasConcept C2781448156 @default.
- W3115048944 hasConcept C30080830 @default.
- W3115048944 hasConcept C42360764 @default.
- W3115048944 hasConcept C506065880 @default.
- W3115048944 hasConcept C71924100 @default.
- W3115048944 hasConcept C89429830 @default.