Matches in SemOpenAlex for { <https://semopenalex.org/work/W3115103619> ?p ?o ?g. }
- W3115103619 endingPage "2691" @default.
- W3115103619 startingPage "2673" @default.
- W3115103619 abstract "Intelligent reflecting surfaces (IRSs) have the potential to transform wireless communication channels into smart reconfigurable propagation environments. To realize this new paradigm, the passive IRSs have to be large, especially for communication in far-field scenarios, so that they can compensate for the large end-to-end path-loss, which is caused by the multiplication of the individual path-losses of the transmitter-to-IRS and IRS-to-receiver channels. However, optimizing a large number of sub-wavelength IRS elements imposes a significant challenge for online transmission. To address this issue, in this article, we develop a physics-based model and a scalable optimization framework for large IRSs. The basic idea is to partition the IRS unit cells into several subsets, referred to as tiles, model the impact of each tile on the wireless channel, and then optimize each tile in two stages, namely an offline design stage and an online optimization stage. For physics-based modeling, we borrow concepts from the radar literature, model each tile as an anomalous reflector, and derive its impact on the wireless channel for a given phase shift by solving the corresponding integral equations for the electric and magnetic vector fields. In the offline design stage, the IRS unit cells of each tile are jointly designed for the support of different transmission modes, where each transmission mode effectively corresponds to a given configuration of the phase shifts that the unit cells of the tile apply to an impinging electromagnetic wave. In the online optimization stage, the best transmission mode of each tile is selected such that a desired quality-of-service (QoS) criterion is maximized. We consider an exemplary downlink system and study the minimization of the base station (BS) transmit power subject to QoS constraints for the users. Since the resulting mixed-integer programming problem for joint optimization of the BS beamforming vectors and the tile transmission modes is non-convex, we derive two efficient suboptimal solutions, which are based on alternating optimization and a greedy approach, respectively. We show that the proposed modeling and optimization framework can be used to efficiently optimize large IRSs comprising thousands of unit cells." @default.
- W3115103619 created "2021-01-05" @default.
- W3115103619 creator A5006620409 @default.
- W3115103619 creator A5033990377 @default.
- W3115103619 creator A5063246704 @default.
- W3115103619 creator A5087843323 @default.
- W3115103619 date "2021-04-01" @default.
- W3115103619 modified "2023-10-05" @default.
- W3115103619 title "Physics-Based Modeling and Scalable Optimization of Large Intelligent Reflecting Surfaces" @default.
- W3115103619 cites W1540764732 @default.
- W3115103619 cites W1994232933 @default.
- W3115103619 cites W2042172691 @default.
- W3115103619 cites W2111953900 @default.
- W3115103619 cites W2345119456 @default.
- W3115103619 cites W2384823607 @default.
- W3115103619 cites W2536076834 @default.
- W3115103619 cites W2757012878 @default.
- W3115103619 cites W2898925204 @default.
- W3115103619 cites W2950077417 @default.
- W3115103619 cites W2963121727 @default.
- W3115103619 cites W2963927517 @default.
- W3115103619 cites W2964277790 @default.
- W3115103619 cites W2969424089 @default.
- W3115103619 cites W2973226602 @default.
- W3115103619 cites W2984937369 @default.
- W3115103619 cites W2991323752 @default.
- W3115103619 cites W2996313530 @default.
- W3115103619 cites W3006557588 @default.
- W3115103619 cites W3009918410 @default.
- W3115103619 cites W3010176898 @default.
- W3115103619 cites W3010372757 @default.
- W3115103619 cites W3021225717 @default.
- W3115103619 cites W3021564798 @default.
- W3115103619 cites W3034281970 @default.
- W3115103619 cites W3035049807 @default.
- W3115103619 cites W3038283497 @default.
- W3115103619 cites W3040433108 @default.
- W3115103619 cites W3041653465 @default.
- W3115103619 cites W3043220753 @default.
- W3115103619 cites W3046122940 @default.
- W3115103619 cites W3047281806 @default.
- W3115103619 cites W3098501536 @default.
- W3115103619 cites W3100075210 @default.
- W3115103619 cites W3100218246 @default.
- W3115103619 cites W3101142891 @default.
- W3115103619 cites W3105289681 @default.
- W3115103619 cites W3122864568 @default.
- W3115103619 doi "https://doi.org/10.1109/tcomm.2020.3047098" @default.
- W3115103619 hasPublicationYear "2021" @default.
- W3115103619 type Work @default.
- W3115103619 sameAs 3115103619 @default.
- W3115103619 citedByCount "179" @default.
- W3115103619 countsByYear W31151036192019 @default.
- W3115103619 countsByYear W31151036192020 @default.
- W3115103619 countsByYear W31151036192021 @default.
- W3115103619 countsByYear W31151036192022 @default.
- W3115103619 countsByYear W31151036192023 @default.
- W3115103619 crossrefType "journal-article" @default.
- W3115103619 hasAuthorship W3115103619A5006620409 @default.
- W3115103619 hasAuthorship W3115103619A5033990377 @default.
- W3115103619 hasAuthorship W3115103619A5063246704 @default.
- W3115103619 hasAuthorship W3115103619A5087843323 @default.
- W3115103619 hasBestOaLocation W31151036191 @default.
- W3115103619 hasConcept C113775141 @default.
- W3115103619 hasConcept C120665830 @default.
- W3115103619 hasConcept C121332964 @default.
- W3115103619 hasConcept C127162648 @default.
- W3115103619 hasConcept C127413603 @default.
- W3115103619 hasConcept C194273485 @default.
- W3115103619 hasConcept C24326235 @default.
- W3115103619 hasConcept C2778415886 @default.
- W3115103619 hasConcept C2982854487 @default.
- W3115103619 hasConcept C41008148 @default.
- W3115103619 hasConcept C47798520 @default.
- W3115103619 hasConcept C48044578 @default.
- W3115103619 hasConcept C555944384 @default.
- W3115103619 hasConcept C761482 @default.
- W3115103619 hasConcept C76155785 @default.
- W3115103619 hasConcept C77088390 @default.
- W3115103619 hasConceptScore W3115103619C113775141 @default.
- W3115103619 hasConceptScore W3115103619C120665830 @default.
- W3115103619 hasConceptScore W3115103619C121332964 @default.
- W3115103619 hasConceptScore W3115103619C127162648 @default.
- W3115103619 hasConceptScore W3115103619C127413603 @default.
- W3115103619 hasConceptScore W3115103619C194273485 @default.
- W3115103619 hasConceptScore W3115103619C24326235 @default.
- W3115103619 hasConceptScore W3115103619C2778415886 @default.
- W3115103619 hasConceptScore W3115103619C2982854487 @default.
- W3115103619 hasConceptScore W3115103619C41008148 @default.
- W3115103619 hasConceptScore W3115103619C47798520 @default.
- W3115103619 hasConceptScore W3115103619C48044578 @default.
- W3115103619 hasConceptScore W3115103619C555944384 @default.
- W3115103619 hasConceptScore W3115103619C761482 @default.
- W3115103619 hasConceptScore W3115103619C76155785 @default.
- W3115103619 hasConceptScore W3115103619C77088390 @default.
- W3115103619 hasFunder F4320306076 @default.
- W3115103619 hasIssue "4" @default.
- W3115103619 hasLocation W31151036191 @default.