Matches in SemOpenAlex for { <https://semopenalex.org/work/W3115125340> ?p ?o ?g. }
- W3115125340 endingPage "1312" @default.
- W3115125340 startingPage "1291" @default.
- W3115125340 abstract "Abstract Surface water quality is an important factor affecting the ecological environment and human living environment. The monitoring of surface water quality by remote sensing monitoring technology can provide important research significance for water resources protection and water quality evaluation. Finding the optimal spectral index sensitive to water quality for remote sensing monitoring of water quality is extremely important for surface water quality analysis and treatment in the Ebinur Lake Basin in arid areas. This study used Sentinel-2MSI data at 10 m resolution to quickly monitor the water quality of the watershed. Through laboratory experiments and measurement data from the Ebinur Lake Basin, 22 water quality parameters (WQPs) were obtained. Through Z-score and redundancy analysis, 9 WQPs with significant contributions were extracted. Based on the remote sensing spectral band, four water indexes (NDWI, NWI, EWI, AWEI-nsh) and 2D modeling spectral index (DI, RI, NDI), the correlation analysis between WQPs and two kinds of spectral band indexes is carried out, and it is concluded that the overall correlation between WQP and 2D spectral modeling is more relevant. This paper calculates the evaluation and models the 2D spectrum of the Water Quality Index (WQI). The WQI is predicted and modeled through four machine learning algorithms (RF, SVM, PLSR, PLSR-SVM).The results show that the inversion effect of the two-dimensional spectral modeling index on water quality parameters (WQPs) is superior to that of the water index, and the correlation coefficient of the DI (R12-R1) SWIR-2 and BLUE band interpolation index reaches 0.787. On this basis, three kinds of two-dimensional spectral modeling indexes are used to inversely synthesize the WQI, and the correlation coefficient of the ratio index of the RI (R11/R8) SWIR-1 and near-infrared (NIR) bands is preferably 0.69. In the WQI prediction, the partial least squares regression support vector machine (PLSR-SVM) model in machine learning algorithms has good modeling and prediction effects (R2c = 0.873, R2v = 0.87), which can provide a good basis. The research results provide references for remote monitoring of surface water in arid areas, and provide a basis for water quality prediction and safety evaluation." @default.
- W3115125340 created "2021-01-05" @default.
- W3115125340 creator A5044941756 @default.
- W3115125340 creator A5057888286 @default.
- W3115125340 creator A5058932428 @default.
- W3115125340 date "2020-12-30" @default.
- W3115125340 modified "2023-10-04" @default.
- W3115125340 title "Machine learning method for quick identification of water quality index (WQI) based on Sentinel-2 MSI data: Ebinur Lake case study" @default.
- W3115125340 cites W1148445081 @default.
- W3115125340 cites W1866849768 @default.
- W3115125340 cites W1995581599 @default.
- W3115125340 cites W2014930460 @default.
- W3115125340 cites W2021063716 @default.
- W3115125340 cites W2028613132 @default.
- W3115125340 cites W2035639988 @default.
- W3115125340 cites W2048728573 @default.
- W3115125340 cites W2052597429 @default.
- W3115125340 cites W2068518809 @default.
- W3115125340 cites W2071664224 @default.
- W3115125340 cites W2077509829 @default.
- W3115125340 cites W2077735909 @default.
- W3115125340 cites W2081198962 @default.
- W3115125340 cites W2089767281 @default.
- W3115125340 cites W2101678239 @default.
- W3115125340 cites W2132104902 @default.
- W3115125340 cites W2141193993 @default.
- W3115125340 cites W2158576480 @default.
- W3115125340 cites W2237190528 @default.
- W3115125340 cites W2280635672 @default.
- W3115125340 cites W2470208725 @default.
- W3115125340 cites W2556587018 @default.
- W3115125340 cites W2572463531 @default.
- W3115125340 cites W2620249041 @default.
- W3115125340 cites W2728316421 @default.
- W3115125340 cites W2734779369 @default.
- W3115125340 cites W2763957358 @default.
- W3115125340 cites W2765805432 @default.
- W3115125340 cites W2771841295 @default.
- W3115125340 cites W2793060913 @default.
- W3115125340 cites W2794490639 @default.
- W3115125340 cites W2802435130 @default.
- W3115125340 cites W2811140076 @default.
- W3115125340 cites W2883090033 @default.
- W3115125340 cites W2896720583 @default.
- W3115125340 cites W2897090465 @default.
- W3115125340 cites W2898245673 @default.
- W3115125340 cites W2902928861 @default.
- W3115125340 cites W2947250749 @default.
- W3115125340 cites W2967839496 @default.
- W3115125340 cites W2973485631 @default.
- W3115125340 cites W2979365020 @default.
- W3115125340 cites W2981083866 @default.
- W3115125340 cites W2994645803 @default.
- W3115125340 cites W2995846871 @default.
- W3115125340 cites W3000690413 @default.
- W3115125340 cites W3011988525 @default.
- W3115125340 cites W3013742723 @default.
- W3115125340 cites W3015485567 @default.
- W3115125340 cites W3087149707 @default.
- W3115125340 doi "https://doi.org/10.2166/ws.2020.381" @default.
- W3115125340 hasPublicationYear "2020" @default.
- W3115125340 type Work @default.
- W3115125340 sameAs 3115125340 @default.
- W3115125340 citedByCount "9" @default.
- W3115125340 countsByYear W31151253402021 @default.
- W3115125340 countsByYear W31151253402022 @default.
- W3115125340 countsByYear W31151253402023 @default.
- W3115125340 crossrefType "journal-article" @default.
- W3115125340 hasAuthorship W3115125340A5044941756 @default.
- W3115125340 hasAuthorship W3115125340A5057888286 @default.
- W3115125340 hasAuthorship W3115125340A5058932428 @default.
- W3115125340 hasBestOaLocation W31151253401 @default.
- W3115125340 hasConcept C119857082 @default.
- W3115125340 hasConcept C12267149 @default.
- W3115125340 hasConcept C127313418 @default.
- W3115125340 hasConcept C136764020 @default.
- W3115125340 hasConcept C154945302 @default.
- W3115125340 hasConcept C18903297 @default.
- W3115125340 hasConcept C2777382242 @default.
- W3115125340 hasConcept C2780092901 @default.
- W3115125340 hasConcept C2780797713 @default.
- W3115125340 hasConcept C39432304 @default.
- W3115125340 hasConcept C41008148 @default.
- W3115125340 hasConcept C62649853 @default.
- W3115125340 hasConcept C86803240 @default.
- W3115125340 hasConceptScore W3115125340C119857082 @default.
- W3115125340 hasConceptScore W3115125340C12267149 @default.
- W3115125340 hasConceptScore W3115125340C127313418 @default.
- W3115125340 hasConceptScore W3115125340C136764020 @default.
- W3115125340 hasConceptScore W3115125340C154945302 @default.
- W3115125340 hasConceptScore W3115125340C18903297 @default.
- W3115125340 hasConceptScore W3115125340C2777382242 @default.
- W3115125340 hasConceptScore W3115125340C2780092901 @default.
- W3115125340 hasConceptScore W3115125340C2780797713 @default.
- W3115125340 hasConceptScore W3115125340C39432304 @default.
- W3115125340 hasConceptScore W3115125340C41008148 @default.
- W3115125340 hasConceptScore W3115125340C62649853 @default.
- W3115125340 hasConceptScore W3115125340C86803240 @default.