Matches in SemOpenAlex for { <https://semopenalex.org/work/W3115164975> ?p ?o ?g. }
- W3115164975 endingPage "120005" @default.
- W3115164975 startingPage "120005" @default.
- W3115164975 abstract "In order to satisfy the heightened emissions regulation and further enhance the performance of the engine, efforts on amelioration of the engine management system are of great significance besides using intelligent regression algorithms. Based on a hydrogen-enriched Wankel rotary engine, multiple engine operations with variable excess air ratios, variable ignition timing, and variable hydrogen enrichment have been carried out a series of engine calibration tests in detail. After recording the required experimental data, three different methods, including quadratic polynomial, artificial neural networks (ANN), and support vector machine (SVM) are applied to construct a multi-objective regression model which gives a unique insight into the mathematical relationship between the engine performance and the operation and control parameters. For the ANN, the effect of the number of nodes in the hidden layer on the regression performance was discussed, and the weight values of the ANN was optimized using a genetic algorithm. For the SVM, the effects of the kernel function and three optimization methods on regression performance were discussed. The results indicated that the SVM exhibited the best fitting results among the three methods. The optimal R2 for brake thermal efficiency, fuel energy flow rate, nitrogen oxide, carbon monoxide, and unburned hydrocarbon is 0.9877, 0.9840, 0.9949, 0.9937, and 0.9992, respectively. It is highly recommended that the SVM method as a generic methodology may be a new direction for nonlinear control system modeling of the Wankel engine." @default.
- W3115164975 created "2021-01-05" @default.
- W3115164975 creator A5001146127 @default.
- W3115164975 creator A5004238860 @default.
- W3115164975 creator A5034116076 @default.
- W3115164975 creator A5047906426 @default.
- W3115164975 creator A5049324251 @default.
- W3115164975 creator A5061113463 @default.
- W3115164975 date "2021-04-01" @default.
- W3115164975 modified "2023-10-16" @default.
- W3115164975 title "Comparative evaluation of intelligent regression algorithms for performance and emissions prediction of a hydrogen-enriched Wankel engine" @default.
- W3115164975 cites W1573541375 @default.
- W3115164975 cites W1630659295 @default.
- W3115164975 cites W1996122683 @default.
- W3115164975 cites W2022933581 @default.
- W3115164975 cites W2051931731 @default.
- W3115164975 cites W2052094818 @default.
- W3115164975 cites W2067542501 @default.
- W3115164975 cites W2157224997 @default.
- W3115164975 cites W2268953907 @default.
- W3115164975 cites W2286777493 @default.
- W3115164975 cites W2346170315 @default.
- W3115164975 cites W2377752863 @default.
- W3115164975 cites W2407682270 @default.
- W3115164975 cites W2484582366 @default.
- W3115164975 cites W2530688094 @default.
- W3115164975 cites W2595316722 @default.
- W3115164975 cites W2623943207 @default.
- W3115164975 cites W2752947230 @default.
- W3115164975 cites W2788770703 @default.
- W3115164975 cites W2789637048 @default.
- W3115164975 cites W2790892402 @default.
- W3115164975 cites W2792492447 @default.
- W3115164975 cites W2793907007 @default.
- W3115164975 cites W2877906923 @default.
- W3115164975 cites W2885444925 @default.
- W3115164975 cites W2885732175 @default.
- W3115164975 cites W2892258530 @default.
- W3115164975 cites W2896336674 @default.
- W3115164975 cites W2906699804 @default.
- W3115164975 cites W2908632429 @default.
- W3115164975 cites W2912306336 @default.
- W3115164975 cites W2913730496 @default.
- W3115164975 cites W2923727031 @default.
- W3115164975 cites W2945895322 @default.
- W3115164975 cites W2946334337 @default.
- W3115164975 cites W2946824552 @default.
- W3115164975 cites W2948111644 @default.
- W3115164975 cites W2954784047 @default.
- W3115164975 cites W2970948886 @default.
- W3115164975 cites W2971569577 @default.
- W3115164975 cites W2976682892 @default.
- W3115164975 cites W2980545021 @default.
- W3115164975 cites W2981756708 @default.
- W3115164975 cites W2982647066 @default.
- W3115164975 cites W2983899643 @default.
- W3115164975 cites W2984286683 @default.
- W3115164975 cites W2988771577 @default.
- W3115164975 cites W2994077076 @default.
- W3115164975 cites W2996700304 @default.
- W3115164975 cites W2996840842 @default.
- W3115164975 cites W2998022356 @default.
- W3115164975 cites W2998543823 @default.
- W3115164975 cites W2998863385 @default.
- W3115164975 cites W3004120738 @default.
- W3115164975 cites W3008760049 @default.
- W3115164975 cites W3008867288 @default.
- W3115164975 cites W3012287368 @default.
- W3115164975 cites W3028999734 @default.
- W3115164975 cites W3034527180 @default.
- W3115164975 cites W3036817432 @default.
- W3115164975 cites W3037678620 @default.
- W3115164975 cites W3041908263 @default.
- W3115164975 cites W3046092176 @default.
- W3115164975 cites W3047309553 @default.
- W3115164975 cites W3082224712 @default.
- W3115164975 cites W3094013646 @default.
- W3115164975 doi "https://doi.org/10.1016/j.fuel.2020.120005" @default.
- W3115164975 hasPublicationYear "2021" @default.
- W3115164975 type Work @default.
- W3115164975 sameAs 3115164975 @default.
- W3115164975 citedByCount "21" @default.
- W3115164975 countsByYear W31151649752021 @default.
- W3115164975 countsByYear W31151649752022 @default.
- W3115164975 countsByYear W31151649752023 @default.
- W3115164975 crossrefType "journal-article" @default.
- W3115164975 hasAuthorship W3115164975A5001146127 @default.
- W3115164975 hasAuthorship W3115164975A5004238860 @default.
- W3115164975 hasAuthorship W3115164975A5034116076 @default.
- W3115164975 hasAuthorship W3115164975A5047906426 @default.
- W3115164975 hasAuthorship W3115164975A5049324251 @default.
- W3115164975 hasAuthorship W3115164975A5061113463 @default.
- W3115164975 hasConcept C11413529 @default.
- W3115164975 hasConcept C119857082 @default.
- W3115164975 hasConcept C120068334 @default.
- W3115164975 hasConcept C12267149 @default.
- W3115164975 hasConcept C41008148 @default.
- W3115164975 hasConcept C48921125 @default.