Matches in SemOpenAlex for { <https://semopenalex.org/work/W3115176246> ?p ?o ?g. }
- W3115176246 endingPage "220504" @default.
- W3115176246 startingPage "220504" @default.
- W3115176246 abstract "It is of great significance to study the weak harmonic signal detection from strong chaotic background. Current detection methods mainly use the chaotic phase space reconstruction method based on Takens theory, among which the neural network method has attracted the most attention. However, these methods require high signal-to-interference-plus-noise ratio (SINR) and are sensitive to Gaussian white noise, etc. Noticing the fact that the second-order statistical properties of chaotic signals are stationary, we propose a harmonic signal detection method from strong chaotic background based on optimal filter. We first construct a data matrix, whose rows are the detection signal and reference signals. The reference signals only contain chaotic interference. Then we calculate the one-dimensional fast Fourier transformation of the data matrix to make each column of the matrix form a frequency channel. The harmonic signal can be detected by searching each frequency channel in the frequency domain, thus the signal detection problem is converted into an optimization problem. Further, we use the optimization theory to design a filter such that it can maintain the gain of the signal from the current frequency channel and suppress signals from other frequency channels as far as possible. Finally, the harmonic signal can be obtained by calculating the output SINR of each frequency channel. In order to reduce the calculation, we can further design a local region optimal filter. We choose part of frequency channels to constitute a local area, thus the dimension of the chaotic interference covariance matrix is greatly reduced. Theoretically speaking, the more the number of auxiliary frequency channels, the better the detection results are. However, in the practical application, choosing two channels on the left and right side of current channel each can obtain a very good detection effect. After obtaining the chaotic interference covariance matrix, we can further achieve the output SINR of each frequency channel. Compared with the traditional methods, the proposed method has the following advantages: 1) it can detect a weak harmonic signal under lower SINR; 2) it can detect a greater range of signal amplitude; 3) it is robust against white Gaussian noise. The simulation results with taking Lorenz system as the strong chaotic background show that the proposed method still has a very good detection effect when SINR =-81.03 dB, and the stronger the harmonic signal, the better the detection effect is, while the neural network method can work under the condition of SINR higher than -67.03 dB; the proposed method still can correctly detect the target signal in the case that the SNR is as low as -20 dB, but the neural network method has a poor detection effect under the same condition." @default.
- W3115176246 created "2021-01-05" @default.
- W3115176246 creator A5029982265 @default.
- W3115176246 creator A5037095625 @default.
- W3115176246 creator A5047368343 @default.
- W3115176246 creator A5070700515 @default.
- W3115176246 creator A5073560948 @default.
- W3115176246 creator A5091136701 @default.
- W3115176246 date "2015-01-01" @default.
- W3115176246 modified "2023-09-25" @default.
- W3115176246 title "Harmonic signal detection method from strong chaotic background based on optimal filter" @default.
- W3115176246 cites W1536463070 @default.
- W3115176246 cites W1999145142 @default.
- W3115176246 cites W2006206932 @default.
- W3115176246 cites W2010168479 @default.
- W3115176246 cites W2044786328 @default.
- W3115176246 cites W2047140460 @default.
- W3115176246 cites W2050805664 @default.
- W3115176246 cites W2069066461 @default.
- W3115176246 cites W2096509667 @default.
- W3115176246 cites W2104043060 @default.
- W3115176246 cites W2109857483 @default.
- W3115176246 cites W2212835196 @default.
- W3115176246 cites W2276270918 @default.
- W3115176246 cites W2588219406 @default.
- W3115176246 cites W3151438110 @default.
- W3115176246 doi "https://doi.org/10.7498/aps.64.220504" @default.
- W3115176246 hasPublicationYear "2015" @default.
- W3115176246 type Work @default.
- W3115176246 sameAs 3115176246 @default.
- W3115176246 citedByCount "2" @default.
- W3115176246 countsByYear W31151762462018 @default.
- W3115176246 countsByYear W31151762462019 @default.
- W3115176246 crossrefType "journal-article" @default.
- W3115176246 hasAuthorship W3115176246A5029982265 @default.
- W3115176246 hasAuthorship W3115176246A5037095625 @default.
- W3115176246 hasAuthorship W3115176246A5047368343 @default.
- W3115176246 hasAuthorship W3115176246A5070700515 @default.
- W3115176246 hasAuthorship W3115176246A5073560948 @default.
- W3115176246 hasAuthorship W3115176246A5091136701 @default.
- W3115176246 hasBestOaLocation W31151762461 @default.
- W3115176246 hasConcept C106131492 @default.
- W3115176246 hasConcept C11413529 @default.
- W3115176246 hasConcept C115961682 @default.
- W3115176246 hasConcept C121332964 @default.
- W3115176246 hasConcept C127162648 @default.
- W3115176246 hasConcept C127934551 @default.
- W3115176246 hasConcept C154945302 @default.
- W3115176246 hasConcept C19118579 @default.
- W3115176246 hasConcept C199360897 @default.
- W3115176246 hasConcept C24890656 @default.
- W3115176246 hasConcept C2775924081 @default.
- W3115176246 hasConcept C2777052490 @default.
- W3115176246 hasConcept C2779843651 @default.
- W3115176246 hasConcept C31972630 @default.
- W3115176246 hasConcept C32022120 @default.
- W3115176246 hasConcept C41008148 @default.
- W3115176246 hasConcept C47446073 @default.
- W3115176246 hasConcept C50151734 @default.
- W3115176246 hasConcept C76155785 @default.
- W3115176246 hasConcept C99498987 @default.
- W3115176246 hasConceptScore W3115176246C106131492 @default.
- W3115176246 hasConceptScore W3115176246C11413529 @default.
- W3115176246 hasConceptScore W3115176246C115961682 @default.
- W3115176246 hasConceptScore W3115176246C121332964 @default.
- W3115176246 hasConceptScore W3115176246C127162648 @default.
- W3115176246 hasConceptScore W3115176246C127934551 @default.
- W3115176246 hasConceptScore W3115176246C154945302 @default.
- W3115176246 hasConceptScore W3115176246C19118579 @default.
- W3115176246 hasConceptScore W3115176246C199360897 @default.
- W3115176246 hasConceptScore W3115176246C24890656 @default.
- W3115176246 hasConceptScore W3115176246C2775924081 @default.
- W3115176246 hasConceptScore W3115176246C2777052490 @default.
- W3115176246 hasConceptScore W3115176246C2779843651 @default.
- W3115176246 hasConceptScore W3115176246C31972630 @default.
- W3115176246 hasConceptScore W3115176246C32022120 @default.
- W3115176246 hasConceptScore W3115176246C41008148 @default.
- W3115176246 hasConceptScore W3115176246C47446073 @default.
- W3115176246 hasConceptScore W3115176246C50151734 @default.
- W3115176246 hasConceptScore W3115176246C76155785 @default.
- W3115176246 hasConceptScore W3115176246C99498987 @default.
- W3115176246 hasIssue "22" @default.
- W3115176246 hasLocation W31151762461 @default.
- W3115176246 hasOpenAccess W3115176246 @default.
- W3115176246 hasPrimaryLocation W31151762461 @default.
- W3115176246 hasRelatedWork W1972666920 @default.
- W3115176246 hasRelatedWork W1994360888 @default.
- W3115176246 hasRelatedWork W2006969008 @default.
- W3115176246 hasRelatedWork W2111970258 @default.
- W3115176246 hasRelatedWork W2181493544 @default.
- W3115176246 hasRelatedWork W2360901294 @default.
- W3115176246 hasRelatedWork W2364724135 @default.
- W3115176246 hasRelatedWork W2383219934 @default.
- W3115176246 hasRelatedWork W24220582 @default.
- W3115176246 hasRelatedWork W2588219406 @default.
- W3115176246 hasVolume "64" @default.
- W3115176246 isParatext "false" @default.
- W3115176246 isRetracted "false" @default.