Matches in SemOpenAlex for { <https://semopenalex.org/work/W3115227747> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3115227747 abstract "The main aim of the Spectrum Sensing (SS) in a Cognitive Radio system is to distinguish between the binary hypotheses H <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>0</sub> : Primary User (PU) is absent and H <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> : PU is active. In this paper, Machine Learning (ML)-based hybrid Spectrum Sensing (SS) scheme is proposed. The scattering of the Test Statistics (TSs) of two detectors is used in the learning and prediction phases. As the SS decision is binary, the proposed scheme requires the learning of only the boundaries of H <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>0</sub> -class in order to make a decision on the PU status: active or idle. Thus, a set of data generated under H <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>0</sub> hypothesis is used to train the detection system. Accordingly, unlike the existing ML-based schemes of the literature, no PU statistical parameters are required. In order to discriminate between H0-class and elsewhere, we used a one-class classification approach that is inspired by the Isolation Forest algorithm. Extensive simulations are done in order to investigate the efficiency of such hybrid SS and the impact of the novelty detection model parameters on the detection performance. Indeed, these simulations corroborate the efficiency of the proposed one-class learning of the hybrid SS system." @default.
- W3115227747 created "2021-01-05" @default.
- W3115227747 creator A5002114766 @default.
- W3115227747 creator A5014209402 @default.
- W3115227747 creator A5015623576 @default.
- W3115227747 creator A5030886244 @default.
- W3115227747 creator A5060002599 @default.
- W3115227747 date "2021-01-24" @default.
- W3115227747 modified "2023-10-17" @default.
- W3115227747 title "One-Class based learning for Hybrid Spectrum Sensing in Cognitive Radio" @default.
- W3115227747 cites W1993573682 @default.
- W3115227747 cites W1995443851 @default.
- W3115227747 cites W2031211320 @default.
- W3115227747 cites W2065424480 @default.
- W3115227747 cites W2087087086 @default.
- W3115227747 cites W2101840010 @default.
- W3115227747 cites W2149256602 @default.
- W3115227747 cites W2296719434 @default.
- W3115227747 cites W2520664327 @default.
- W3115227747 cites W2564946531 @default.
- W3115227747 cites W2617356765 @default.
- W3115227747 cites W2786168957 @default.
- W3115227747 cites W2805607561 @default.
- W3115227747 cites W2891720588 @default.
- W3115227747 doi "https://doi.org/10.23919/eusipco47968.2020.9287326" @default.
- W3115227747 hasPublicationYear "2021" @default.
- W3115227747 type Work @default.
- W3115227747 sameAs 3115227747 @default.
- W3115227747 citedByCount "2" @default.
- W3115227747 countsByYear W31152277472021 @default.
- W3115227747 countsByYear W31152277472022 @default.
- W3115227747 crossrefType "proceedings-article" @default.
- W3115227747 hasAuthorship W3115227747A5002114766 @default.
- W3115227747 hasAuthorship W3115227747A5014209402 @default.
- W3115227747 hasAuthorship W3115227747A5015623576 @default.
- W3115227747 hasAuthorship W3115227747A5030886244 @default.
- W3115227747 hasAuthorship W3115227747A5060002599 @default.
- W3115227747 hasConcept C11413529 @default.
- W3115227747 hasConcept C119857082 @default.
- W3115227747 hasConcept C121332964 @default.
- W3115227747 hasConcept C149946192 @default.
- W3115227747 hasConcept C154945302 @default.
- W3115227747 hasConcept C156778621 @default.
- W3115227747 hasConcept C2777212361 @default.
- W3115227747 hasConcept C33923547 @default.
- W3115227747 hasConcept C41008148 @default.
- W3115227747 hasConcept C48372109 @default.
- W3115227747 hasConcept C555944384 @default.
- W3115227747 hasConcept C62520636 @default.
- W3115227747 hasConcept C76155785 @default.
- W3115227747 hasConcept C94375191 @default.
- W3115227747 hasConceptScore W3115227747C11413529 @default.
- W3115227747 hasConceptScore W3115227747C119857082 @default.
- W3115227747 hasConceptScore W3115227747C121332964 @default.
- W3115227747 hasConceptScore W3115227747C149946192 @default.
- W3115227747 hasConceptScore W3115227747C154945302 @default.
- W3115227747 hasConceptScore W3115227747C156778621 @default.
- W3115227747 hasConceptScore W3115227747C2777212361 @default.
- W3115227747 hasConceptScore W3115227747C33923547 @default.
- W3115227747 hasConceptScore W3115227747C41008148 @default.
- W3115227747 hasConceptScore W3115227747C48372109 @default.
- W3115227747 hasConceptScore W3115227747C555944384 @default.
- W3115227747 hasConceptScore W3115227747C62520636 @default.
- W3115227747 hasConceptScore W3115227747C76155785 @default.
- W3115227747 hasConceptScore W3115227747C94375191 @default.
- W3115227747 hasLocation W31152277471 @default.
- W3115227747 hasLocation W31152277472 @default.
- W3115227747 hasOpenAccess W3115227747 @default.
- W3115227747 hasPrimaryLocation W31152277471 @default.
- W3115227747 hasRelatedWork W2048427509 @default.
- W3115227747 hasRelatedWork W2330895226 @default.
- W3115227747 hasRelatedWork W2961085424 @default.
- W3115227747 hasRelatedWork W3046775127 @default.
- W3115227747 hasRelatedWork W3141040581 @default.
- W3115227747 hasRelatedWork W4285260836 @default.
- W3115227747 hasRelatedWork W4286629047 @default.
- W3115227747 hasRelatedWork W4306321456 @default.
- W3115227747 hasRelatedWork W4306674287 @default.
- W3115227747 hasRelatedWork W4224009465 @default.
- W3115227747 isParatext "false" @default.
- W3115227747 isRetracted "false" @default.
- W3115227747 magId "3115227747" @default.
- W3115227747 workType "article" @default.