Matches in SemOpenAlex for { <https://semopenalex.org/work/W3115238212> ?p ?o ?g. }
- W3115238212 endingPage "114478" @default.
- W3115238212 startingPage "114478" @default.
- W3115238212 abstract "Over recent decades, we have witnessed a widescale deterioration in seagrass habitats in the Mediterranean Sea. Although the causes underlying this regression are not yet clear, there is a broad consensus that new methods are required to generate high-quality data on seagrass meadows. Specifically, there is a lack of available data in order to assess changes over time in the spatial distribution of seagrass. This article introduces a new methodology to ease data-gathering operations in Posidonia oceanica meadows for benthic mapping, by using the latest developments in lightweight autonomous vehicles and image processing. The proposed methodology has been designed to build a series of online maps, by employing an input data feed based on an encoder–decoder convolutional neural network (CNN) that automatically segments the images recorded by the vehicle. In turn, it uses a sparse Gaussian Process (GP) to map uncertainty linked to the spatial distribution of seagrass. This article presents the most suitable CNN and GP, as well as performance validation results for the method, based on data acquired in three field tests." @default.
- W3115238212 created "2021-01-05" @default.
- W3115238212 creator A5004601128 @default.
- W3115238212 creator A5011783532 @default.
- W3115238212 creator A5019400516 @default.
- W3115238212 creator A5029671911 @default.
- W3115238212 creator A5066132600 @default.
- W3115238212 date "2021-05-01" @default.
- W3115238212 modified "2023-10-18" @default.
- W3115238212 title "Sparse Gaussian process for online seagrass semantic mapping" @default.
- W3115238212 cites W1938668859 @default.
- W3115238212 cites W1969142081 @default.
- W3115238212 cites W1978723339 @default.
- W3115238212 cites W2004902641 @default.
- W3115238212 cites W2015707887 @default.
- W3115238212 cites W2021082829 @default.
- W3115238212 cites W2028979491 @default.
- W3115238212 cites W2031004010 @default.
- W3115238212 cites W2031231486 @default.
- W3115238212 cites W2048270893 @default.
- W3115238212 cites W2056482671 @default.
- W3115238212 cites W2066208539 @default.
- W3115238212 cites W2075967785 @default.
- W3115238212 cites W2080072001 @default.
- W3115238212 cites W2085427282 @default.
- W3115238212 cites W2094785904 @default.
- W3115238212 cites W2095238313 @default.
- W3115238212 cites W2097375736 @default.
- W3115238212 cites W2114056667 @default.
- W3115238212 cites W2127590078 @default.
- W3115238212 cites W2130509491 @default.
- W3115238212 cites W2143088799 @default.
- W3115238212 cites W2296267969 @default.
- W3115238212 cites W2413462758 @default.
- W3115238212 cites W2488515735 @default.
- W3115238212 cites W2589028969 @default.
- W3115238212 cites W2746485780 @default.
- W3115238212 cites W2766494712 @default.
- W3115238212 cites W2782433567 @default.
- W3115238212 cites W2794046143 @default.
- W3115238212 cites W2876772800 @default.
- W3115238212 cites W2896345331 @default.
- W3115238212 cites W3103648783 @default.
- W3115238212 cites W956432429 @default.
- W3115238212 doi "https://doi.org/10.1016/j.eswa.2020.114478" @default.
- W3115238212 hasPublicationYear "2021" @default.
- W3115238212 type Work @default.
- W3115238212 sameAs 3115238212 @default.
- W3115238212 citedByCount "5" @default.
- W3115238212 countsByYear W31152382122021 @default.
- W3115238212 countsByYear W31152382122022 @default.
- W3115238212 countsByYear W31152382122023 @default.
- W3115238212 crossrefType "journal-article" @default.
- W3115238212 hasAuthorship W3115238212A5004601128 @default.
- W3115238212 hasAuthorship W3115238212A5011783532 @default.
- W3115238212 hasAuthorship W3115238212A5019400516 @default.
- W3115238212 hasAuthorship W3115238212A5029671911 @default.
- W3115238212 hasAuthorship W3115238212A5066132600 @default.
- W3115238212 hasConcept C111919701 @default.
- W3115238212 hasConcept C121332964 @default.
- W3115238212 hasConcept C124101348 @default.
- W3115238212 hasConcept C154945302 @default.
- W3115238212 hasConcept C163716315 @default.
- W3115238212 hasConcept C185933670 @default.
- W3115238212 hasConcept C18903297 @default.
- W3115238212 hasConcept C202444582 @default.
- W3115238212 hasConcept C205649164 @default.
- W3115238212 hasConcept C2777400808 @default.
- W3115238212 hasConcept C2780687703 @default.
- W3115238212 hasConcept C33923547 @default.
- W3115238212 hasConcept C41008148 @default.
- W3115238212 hasConcept C61326573 @default.
- W3115238212 hasConcept C62520636 @default.
- W3115238212 hasConcept C62649853 @default.
- W3115238212 hasConcept C81363708 @default.
- W3115238212 hasConcept C86803240 @default.
- W3115238212 hasConcept C9652623 @default.
- W3115238212 hasConcept C9770341 @default.
- W3115238212 hasConcept C98045186 @default.
- W3115238212 hasConceptScore W3115238212C111919701 @default.
- W3115238212 hasConceptScore W3115238212C121332964 @default.
- W3115238212 hasConceptScore W3115238212C124101348 @default.
- W3115238212 hasConceptScore W3115238212C154945302 @default.
- W3115238212 hasConceptScore W3115238212C163716315 @default.
- W3115238212 hasConceptScore W3115238212C185933670 @default.
- W3115238212 hasConceptScore W3115238212C18903297 @default.
- W3115238212 hasConceptScore W3115238212C202444582 @default.
- W3115238212 hasConceptScore W3115238212C205649164 @default.
- W3115238212 hasConceptScore W3115238212C2777400808 @default.
- W3115238212 hasConceptScore W3115238212C2780687703 @default.
- W3115238212 hasConceptScore W3115238212C33923547 @default.
- W3115238212 hasConceptScore W3115238212C41008148 @default.
- W3115238212 hasConceptScore W3115238212C61326573 @default.
- W3115238212 hasConceptScore W3115238212C62520636 @default.
- W3115238212 hasConceptScore W3115238212C62649853 @default.
- W3115238212 hasConceptScore W3115238212C81363708 @default.
- W3115238212 hasConceptScore W3115238212C86803240 @default.
- W3115238212 hasConceptScore W3115238212C9652623 @default.