Matches in SemOpenAlex for { <https://semopenalex.org/work/W3115259077> ?p ?o ?g. }
- W3115259077 endingPage "1454" @default.
- W3115259077 startingPage "1441" @default.
- W3115259077 abstract "The semiparametric partial linear models are often used in real data analysis for its flexibility and parsimony. Statistical inference of this model is restricted with two conditions: (i) the linear and nonlinear parts are known in advance, (ii) the errors are independent. However, in practice, this is unreasonable to artificially determine which subset of variables have linear effect on the response and which have nonlinear effect. In addition, the assumption of errors being independent may be incorrect for time series data. Therefore, it is of great interest to develop some efficient methods to distinguish linear components from nonlinear ones with correlated errors. In this paper, we develop a method for identifying linear and nonlinear components, and estimate the coefficients of error structure. The performance of the proposed method is examined by simulation study and analyses a real data set for an illustration." @default.
- W3115259077 created "2021-01-05" @default.
- W3115259077 creator A5020825259 @default.
- W3115259077 creator A5021129422 @default.
- W3115259077 creator A5024974930 @default.
- W3115259077 creator A5066559252 @default.
- W3115259077 date "2020-12-30" @default.
- W3115259077 modified "2023-10-16" @default.
- W3115259077 title "Identification for partially linear regression model with autoregressive errors" @default.
- W3115259077 cites W1423766661 @default.
- W3115259077 cites W1570996322 @default.
- W3115259077 cites W1824682467 @default.
- W3115259077 cites W1964173605 @default.
- W3115259077 cites W1967093497 @default.
- W3115259077 cites W1984764931 @default.
- W3115259077 cites W2005901253 @default.
- W3115259077 cites W2027827909 @default.
- W3115259077 cites W2042089645 @default.
- W3115259077 cites W2042871013 @default.
- W3115259077 cites W2060939436 @default.
- W3115259077 cites W2074682976 @default.
- W3115259077 cites W2080365013 @default.
- W3115259077 cites W2092358017 @default.
- W3115259077 cites W2227995026 @default.
- W3115259077 cites W2375215062 @default.
- W3115259077 cites W2492428594 @default.
- W3115259077 cites W2743442946 @default.
- W3115259077 cites W2765878542 @default.
- W3115259077 cites W2885760818 @default.
- W3115259077 cites W2899676570 @default.
- W3115259077 cites W2964122172 @default.
- W3115259077 cites W3140916703 @default.
- W3115259077 cites W3144545015 @default.
- W3115259077 cites W4235149167 @default.
- W3115259077 cites W4292963524 @default.
- W3115259077 cites W638544165 @default.
- W3115259077 doi "https://doi.org/10.1080/00949655.2020.1857763" @default.
- W3115259077 hasPublicationYear "2020" @default.
- W3115259077 type Work @default.
- W3115259077 sameAs 3115259077 @default.
- W3115259077 citedByCount "0" @default.
- W3115259077 crossrefType "journal-article" @default.
- W3115259077 hasAuthorship W3115259077A5020825259 @default.
- W3115259077 hasAuthorship W3115259077A5021129422 @default.
- W3115259077 hasAuthorship W3115259077A5024974930 @default.
- W3115259077 hasAuthorship W3115259077A5066559252 @default.
- W3115259077 hasConcept C105795698 @default.
- W3115259077 hasConcept C11413529 @default.
- W3115259077 hasConcept C121332964 @default.
- W3115259077 hasConcept C134261354 @default.
- W3115259077 hasConcept C143724316 @default.
- W3115259077 hasConcept C151730666 @default.
- W3115259077 hasConcept C154945302 @default.
- W3115259077 hasConcept C158622935 @default.
- W3115259077 hasConcept C159877910 @default.
- W3115259077 hasConcept C163175372 @default.
- W3115259077 hasConcept C179024874 @default.
- W3115259077 hasConcept C2776214188 @default.
- W3115259077 hasConcept C28826006 @default.
- W3115259077 hasConcept C33923547 @default.
- W3115259077 hasConcept C41008148 @default.
- W3115259077 hasConcept C48921125 @default.
- W3115259077 hasConcept C58489278 @default.
- W3115259077 hasConcept C62520636 @default.
- W3115259077 hasConcept C86803240 @default.
- W3115259077 hasConceptScore W3115259077C105795698 @default.
- W3115259077 hasConceptScore W3115259077C11413529 @default.
- W3115259077 hasConceptScore W3115259077C121332964 @default.
- W3115259077 hasConceptScore W3115259077C134261354 @default.
- W3115259077 hasConceptScore W3115259077C143724316 @default.
- W3115259077 hasConceptScore W3115259077C151730666 @default.
- W3115259077 hasConceptScore W3115259077C154945302 @default.
- W3115259077 hasConceptScore W3115259077C158622935 @default.
- W3115259077 hasConceptScore W3115259077C159877910 @default.
- W3115259077 hasConceptScore W3115259077C163175372 @default.
- W3115259077 hasConceptScore W3115259077C179024874 @default.
- W3115259077 hasConceptScore W3115259077C2776214188 @default.
- W3115259077 hasConceptScore W3115259077C28826006 @default.
- W3115259077 hasConceptScore W3115259077C33923547 @default.
- W3115259077 hasConceptScore W3115259077C41008148 @default.
- W3115259077 hasConceptScore W3115259077C48921125 @default.
- W3115259077 hasConceptScore W3115259077C58489278 @default.
- W3115259077 hasConceptScore W3115259077C62520636 @default.
- W3115259077 hasConceptScore W3115259077C86803240 @default.
- W3115259077 hasFunder F4320333169 @default.
- W3115259077 hasIssue "7" @default.
- W3115259077 hasLocation W31152590771 @default.
- W3115259077 hasOpenAccess W3115259077 @default.
- W3115259077 hasPrimaryLocation W31152590771 @default.
- W3115259077 hasRelatedWork W1995726632 @default.
- W3115259077 hasRelatedWork W2011611029 @default.
- W3115259077 hasRelatedWork W2117380618 @default.
- W3115259077 hasRelatedWork W2119093698 @default.
- W3115259077 hasRelatedWork W2124416866 @default.
- W3115259077 hasRelatedWork W2624501724 @default.
- W3115259077 hasRelatedWork W2924496201 @default.
- W3115259077 hasRelatedWork W3010106964 @default.
- W3115259077 hasRelatedWork W3196705346 @default.