Matches in SemOpenAlex for { <https://semopenalex.org/work/W3115293824> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3115293824 endingPage "2544" @default.
- W3115293824 startingPage "2535" @default.
- W3115293824 abstract "Clustering is one of the most important unsupervised machine learning tasks. It is widely used to solve problems of intrusion detection, text analysis, image segmentation etc. Subspace clustering is the most important method for high-dimensional data clustering. In order to solve the problem of parallel subspace clustering for high-dimensional big data, this paper proposes a parallel subspace clustering algorithm based on spark named PSubCLUS which is inspired by SubCLU, a classical subspace clustering algorithm. While Spark is the most popular big data parallel processing platform currently, PSubCLUS uses the Resilient Distributed Datasets (RDD) provided by Spark to store data points in a distributed way. The two main performing stages of this algorithm, one-dimensional subspace clustering and iterative clustering, can be executed in parallel on each worker node of cluster. PSubCLUS also uses a repartition method based on the number of data points to achieve load balancing. Experimental results show that PSubCLUS has good parallel speedup and ideal load balancing effect, which is suitable for solving the parallel subspace clustering of high-dimensional big data." @default.
- W3115293824 created "2021-01-05" @default.
- W3115293824 creator A5024974902 @default.
- W3115293824 creator A5048543599 @default.
- W3115293824 date "2021-01-01" @default.
- W3115293824 modified "2023-10-14" @default.
- W3115293824 title "PSubCLUS: A Parallel Subspace Clustering Algorithm Based On Spark" @default.
- W3115293824 cites W1501500081 @default.
- W3115293824 cites W1523741643 @default.
- W3115293824 cites W1524787014 @default.
- W3115293824 cites W1549024380 @default.
- W3115293824 cites W1562753845 @default.
- W3115293824 cites W1977171681 @default.
- W3115293824 cites W1977496278 @default.
- W3115293824 cites W1992419399 @default.
- W3115293824 cites W2006533296 @default.
- W3115293824 cites W2008043556 @default.
- W3115293824 cites W2011430131 @default.
- W3115293824 cites W2042035594 @default.
- W3115293824 cites W2078945459 @default.
- W3115293824 cites W2083620785 @default.
- W3115293824 cites W2089165876 @default.
- W3115293824 cites W2089468765 @default.
- W3115293824 cites W2101109743 @default.
- W3115293824 cites W2104670598 @default.
- W3115293824 cites W2105947650 @default.
- W3115293824 cites W2118661197 @default.
- W3115293824 cites W2128540811 @default.
- W3115293824 cites W2139450862 @default.
- W3115293824 cites W2141585940 @default.
- W3115293824 cites W2143978378 @default.
- W3115293824 cites W2144743826 @default.
- W3115293824 cites W2153233077 @default.
- W3115293824 cites W2154053567 @default.
- W3115293824 cites W2160642098 @default.
- W3115293824 cites W2532095873 @default.
- W3115293824 cites W2542459869 @default.
- W3115293824 cites W2594410993 @default.
- W3115293824 cites W2728765559 @default.
- W3115293824 cites W2769268416 @default.
- W3115293824 cites W2775192194 @default.
- W3115293824 cites W2784378868 @default.
- W3115293824 cites W2791491037 @default.
- W3115293824 cites W2807082387 @default.
- W3115293824 cites W2807201150 @default.
- W3115293824 cites W2905457976 @default.
- W3115293824 cites W2963035753 @default.
- W3115293824 cites W3081853512 @default.
- W3115293824 cites W4231029117 @default.
- W3115293824 cites W4234536190 @default.
- W3115293824 cites W4246396312 @default.
- W3115293824 cites W4246598646 @default.
- W3115293824 cites W80917968 @default.
- W3115293824 doi "https://doi.org/10.1109/access.2020.3047094" @default.
- W3115293824 hasPublicationYear "2021" @default.
- W3115293824 type Work @default.
- W3115293824 sameAs 3115293824 @default.
- W3115293824 citedByCount "2" @default.
- W3115293824 countsByYear W31152938242022 @default.
- W3115293824 countsByYear W31152938242023 @default.
- W3115293824 crossrefType "journal-article" @default.
- W3115293824 hasAuthorship W3115293824A5024974902 @default.
- W3115293824 hasAuthorship W3115293824A5048543599 @default.
- W3115293824 hasBestOaLocation W31152938241 @default.
- W3115293824 hasConcept C11413529 @default.
- W3115293824 hasConcept C154945302 @default.
- W3115293824 hasConcept C199360897 @default.
- W3115293824 hasConcept C2781215313 @default.
- W3115293824 hasConcept C32834561 @default.
- W3115293824 hasConcept C41008148 @default.
- W3115293824 hasConcept C73555534 @default.
- W3115293824 hasConceptScore W3115293824C11413529 @default.
- W3115293824 hasConceptScore W3115293824C154945302 @default.
- W3115293824 hasConceptScore W3115293824C199360897 @default.
- W3115293824 hasConceptScore W3115293824C2781215313 @default.
- W3115293824 hasConceptScore W3115293824C32834561 @default.
- W3115293824 hasConceptScore W3115293824C41008148 @default.
- W3115293824 hasConceptScore W3115293824C73555534 @default.
- W3115293824 hasFunder F4320326664 @default.
- W3115293824 hasLocation W31152938241 @default.
- W3115293824 hasLocation W31152938242 @default.
- W3115293824 hasOpenAccess W3115293824 @default.
- W3115293824 hasPrimaryLocation W31152938241 @default.
- W3115293824 hasRelatedWork W1849651648 @default.
- W3115293824 hasRelatedWork W1999627569 @default.
- W3115293824 hasRelatedWork W2296478608 @default.
- W3115293824 hasRelatedWork W2380998760 @default.
- W3115293824 hasRelatedWork W2516280927 @default.
- W3115293824 hasRelatedWork W2785593625 @default.
- W3115293824 hasRelatedWork W2974272319 @default.
- W3115293824 hasRelatedWork W2997395344 @default.
- W3115293824 hasRelatedWork W3108892885 @default.
- W3115293824 hasRelatedWork W763609066 @default.
- W3115293824 hasVolume "9" @default.
- W3115293824 isParatext "false" @default.
- W3115293824 isRetracted "false" @default.
- W3115293824 magId "3115293824" @default.
- W3115293824 workType "article" @default.