Matches in SemOpenAlex for { <https://semopenalex.org/work/W3115311412> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W3115311412 abstract "We proposed a new method to detect the ship targets in large scale remote sensing images, which can recognize the fine-class ship targets more than just detect the targets. The pipeline consists of cascade neural networks to reach higher detection and recognition performance. To detect better, we use different threshold in the cascade module, so that we can eliminate background interference better. We also use multi-direction boxes to detect the ship targets to get better performance. To recognize better, we firstly recognize ship category in a module, then we recognize the type in another module to get fine-class ship recognition results. Through experiments on the Google Earth remote sensing image data set collected by ourselves and HRSC2016 data set, it shows that the method is effective in ship target detection and fine-class recognition of remote sensing image, and the performance is improved compared with the previous algorithms." @default.
- W3115311412 created "2021-01-05" @default.
- W3115311412 creator A5057341166 @default.
- W3115311412 creator A5084510530 @default.
- W3115311412 date "2020-10-17" @default.
- W3115311412 modified "2023-10-01" @default.
- W3115311412 title "Ship target detection and fine-class recognition based on course-to-fine cascade neural networks" @default.
- W3115311412 cites W2037220441 @default.
- W3115311412 cites W2110015572 @default.
- W3115311412 cites W2594177559 @default.
- W3115311412 cites W2763070548 @default.
- W3115311412 cites W2887362407 @default.
- W3115311412 doi "https://doi.org/10.1145/3438872.3439109" @default.
- W3115311412 hasPublicationYear "2020" @default.
- W3115311412 type Work @default.
- W3115311412 sameAs 3115311412 @default.
- W3115311412 citedByCount "0" @default.
- W3115311412 crossrefType "proceedings-article" @default.
- W3115311412 hasAuthorship W3115311412A5057341166 @default.
- W3115311412 hasAuthorship W3115311412A5084510530 @default.
- W3115311412 hasConcept C127413603 @default.
- W3115311412 hasConcept C146978453 @default.
- W3115311412 hasConcept C153180895 @default.
- W3115311412 hasConcept C154945302 @default.
- W3115311412 hasConcept C2777212361 @default.
- W3115311412 hasConcept C2777552389 @default.
- W3115311412 hasConcept C34146451 @default.
- W3115311412 hasConcept C41008148 @default.
- W3115311412 hasConcept C42360764 @default.
- W3115311412 hasConcept C50644808 @default.
- W3115311412 hasConceptScore W3115311412C127413603 @default.
- W3115311412 hasConceptScore W3115311412C146978453 @default.
- W3115311412 hasConceptScore W3115311412C153180895 @default.
- W3115311412 hasConceptScore W3115311412C154945302 @default.
- W3115311412 hasConceptScore W3115311412C2777212361 @default.
- W3115311412 hasConceptScore W3115311412C2777552389 @default.
- W3115311412 hasConceptScore W3115311412C34146451 @default.
- W3115311412 hasConceptScore W3115311412C41008148 @default.
- W3115311412 hasConceptScore W3115311412C42360764 @default.
- W3115311412 hasConceptScore W3115311412C50644808 @default.
- W3115311412 hasLocation W31153114121 @default.
- W3115311412 hasOpenAccess W3115311412 @default.
- W3115311412 hasPrimaryLocation W31153114121 @default.
- W3115311412 hasRelatedWork W1976100036 @default.
- W3115311412 hasRelatedWork W2145487113 @default.
- W3115311412 hasRelatedWork W2356237567 @default.
- W3115311412 hasRelatedWork W2361777686 @default.
- W3115311412 hasRelatedWork W2384344023 @default.
- W3115311412 hasRelatedWork W2385978468 @default.
- W3115311412 hasRelatedWork W2386387936 @default.
- W3115311412 hasRelatedWork W3107474891 @default.
- W3115311412 hasRelatedWork W3213660063 @default.
- W3115311412 hasRelatedWork W4308081923 @default.
- W3115311412 isParatext "false" @default.
- W3115311412 isRetracted "false" @default.
- W3115311412 magId "3115311412" @default.
- W3115311412 workType "article" @default.