Matches in SemOpenAlex for { <https://semopenalex.org/work/W3115346036> ?p ?o ?g. }
- W3115346036 endingPage "56" @default.
- W3115346036 startingPage "56" @default.
- W3115346036 abstract "Internet of things (IoT) cloud-based applications deliver advanced solutions for smart cities to decrease traffic accidents caused by driver fatigue while driving on the road. Environmental conditions or driver behavior can ultimately lead to serious roadside accidents. In recent years, the authors have developed many low-cost, computerized, driver fatigue detection systems (DFDs) to help drivers, by using multi-sensors, and mobile and cloud-based computing architecture. To promote safe driving, these are the most current emerging platforms that were introduced in the past. In this paper, we reviewed state-of-the-art approaches for predicting unsafe driving styles using three common IoT-based architectures. The novelty of this article is to show major differences among multi-sensors, smartphone-based, and cloud-based architectures in multimodal feature processing. We discussed all of the problems that machine learning techniques faced in recent years, particularly the deep learning (DL) model, to predict driver hypovigilance, especially in terms of these three IoT-based architectures. Moreover, we performed state-of-the-art comparisons by using driving simulators to incorporate multimodal features of the driver. We also mention online data sources in this article to test and train network architecture in the field of DFDs on public available multimodal datasets. These comparisons assist other authors to continue future research in this domain. To evaluate the performance, we mention the major problems in these three architectures to help researchers use the best IoT-based architecture for detecting DFDs in a real-time environment. Moreover, the important factors of Multi-Access Edge Computing (MEC) and 5th generation (5G) networks are analyzed in the context of deep learning architecture to improve the response time of DFD systems. Lastly, it is concluded that there is a research gap when it comes to implementing the DFD systems on MEC and 5G technologies by using multimodal features and DL architecture." @default.
- W3115346036 created "2021-01-05" @default.
- W3115346036 creator A5038718984 @default.
- W3115346036 creator A5088345772 @default.
- W3115346036 date "2020-12-24" @default.
- W3115346036 modified "2023-10-03" @default.
- W3115346036 title "Driver Fatigue Detection Systems Using Multi-Sensors, Smartphone, and Cloud-Based Computing Platforms: A Comparative Analysis" @default.
- W3115346036 cites W1154717539 @default.
- W3115346036 cites W1809120057 @default.
- W3115346036 cites W1849277567 @default.
- W3115346036 cites W1904693176 @default.
- W3115346036 cites W1938223019 @default.
- W3115346036 cites W1954814386 @default.
- W3115346036 cites W1964867524 @default.
- W3115346036 cites W1969901663 @default.
- W3115346036 cites W1971955426 @default.
- W3115346036 cites W1985441869 @default.
- W3115346036 cites W1999394970 @default.
- W3115346036 cites W2000503364 @default.
- W3115346036 cites W2001369369 @default.
- W3115346036 cites W2008268810 @default.
- W3115346036 cites W2020676607 @default.
- W3115346036 cites W2024131117 @default.
- W3115346036 cites W2027286771 @default.
- W3115346036 cites W2029250042 @default.
- W3115346036 cites W2052770734 @default.
- W3115346036 cites W2056607621 @default.
- W3115346036 cites W2056741100 @default.
- W3115346036 cites W2057017203 @default.
- W3115346036 cites W2058569601 @default.
- W3115346036 cites W2071086297 @default.
- W3115346036 cites W2071878275 @default.
- W3115346036 cites W2075000159 @default.
- W3115346036 cites W2076587863 @default.
- W3115346036 cites W2077724816 @default.
- W3115346036 cites W2079838091 @default.
- W3115346036 cites W2080620215 @default.
- W3115346036 cites W2083637997 @default.
- W3115346036 cites W2094737162 @default.
- W3115346036 cites W2096382519 @default.
- W3115346036 cites W2104237724 @default.
- W3115346036 cites W2105346939 @default.
- W3115346036 cites W2107486366 @default.
- W3115346036 cites W2109255472 @default.
- W3115346036 cites W2110123612 @default.
- W3115346036 cites W2146601807 @default.
- W3115346036 cites W2146976664 @default.
- W3115346036 cites W2154797012 @default.
- W3115346036 cites W2155217597 @default.
- W3115346036 cites W2172717914 @default.
- W3115346036 cites W2190194936 @default.
- W3115346036 cites W2215053149 @default.
- W3115346036 cites W2217896605 @default.
- W3115346036 cites W2236318481 @default.
- W3115346036 cites W2280370717 @default.
- W3115346036 cites W2286439238 @default.
- W3115346036 cites W2307505828 @default.
- W3115346036 cites W2326965557 @default.
- W3115346036 cites W2336384609 @default.
- W3115346036 cites W2342491128 @default.
- W3115346036 cites W2342611082 @default.
- W3115346036 cites W2343720045 @default.
- W3115346036 cites W2343897680 @default.
- W3115346036 cites W2390680135 @default.
- W3115346036 cites W2428938247 @default.
- W3115346036 cites W2468367897 @default.
- W3115346036 cites W2489692225 @default.
- W3115346036 cites W2509155366 @default.
- W3115346036 cites W2509901229 @default.
- W3115346036 cites W2529605388 @default.
- W3115346036 cites W2532342690 @default.
- W3115346036 cites W2539417147 @default.
- W3115346036 cites W2546426759 @default.
- W3115346036 cites W2549170069 @default.
- W3115346036 cites W2550780661 @default.
- W3115346036 cites W2554020789 @default.
- W3115346036 cites W2556398113 @default.
- W3115346036 cites W2558193840 @default.
- W3115346036 cites W2570011896 @default.
- W3115346036 cites W2583387051 @default.
- W3115346036 cites W2588142644 @default.
- W3115346036 cites W2591379487 @default.
- W3115346036 cites W2592768690 @default.
- W3115346036 cites W2594094854 @default.
- W3115346036 cites W2600728771 @default.
- W3115346036 cites W2607908355 @default.
- W3115346036 cites W2609112393 @default.
- W3115346036 cites W2615237916 @default.
- W3115346036 cites W2765706707 @default.
- W3115346036 cites W2765992395 @default.
- W3115346036 cites W2767434288 @default.
- W3115346036 cites W2771546113 @default.
- W3115346036 cites W2773325192 @default.
- W3115346036 cites W2774445955 @default.
- W3115346036 cites W2790986545 @default.
- W3115346036 cites W2791222159 @default.
- W3115346036 cites W2791472699 @default.
- W3115346036 cites W2793506100 @default.