Matches in SemOpenAlex for { <https://semopenalex.org/work/W3115358103> ?p ?o ?g. }
- W3115358103 endingPage "120006" @default.
- W3115358103 startingPage "120006" @default.
- W3115358103 abstract "• Combining machine learning with NMR spectra to predict the kerogen components and types. • Propose a solution to convert the 2D graph into the available form for machine learning models. • Build an automatic labeling platform and generate over 22,000 training samples. • The prediction accuracy of indicators in the optimal model can achieve 90% in total. • The method has advantages of intelligentization, high-throughput prediction, high accuracy. This study aims to develop a new method that combines machine learning with nuclear magnetic resonance (NMR) spectra to predict the kerogen components and types. Kerogen is the primary hydrocarbon source of shale oil/gas, and nearly half of the hydrocarbons in shale are adsorbed in kerogen. The adsorption and hydrocarbon generation capacity of kerogen is directly related to its types, molecular components, and structures. Fruitful researches studying kerogen at the molecular level have been conducted. Unfortunately, these methods are complicated, time-consuming, and labor-intensive. Our method has the advantages of high-throughput prediction, high accuracy, and time savings compared with the existing methods. Additionally, this method simplifies the operations from repetitive trial and error. This study proposes a solution to convert non-uniform two-dimensional (2D) graph into a uniform one-dimensional (1D) matrix, which makes 2D graph data available for machine learning models. An automatic labeling platform is constructed that annotated over 22,000 groups of organic matter molecules and their NMR spectra. The results show that the carbon, hydrogen, and oxygen element prediction accuracy reach 96.1%, 94.8%, and 81.7%, respectively. In addition, the accuracy of the three kerogen types is approximately 90% in total. These results reflect the excellent performance of the machine learning method. Therefore, our work provides an automated and intelligent prediction and analysis method, which is a powerful and superior tool in kerogen studies at the molecular level." @default.
- W3115358103 created "2021-01-05" @default.
- W3115358103 creator A5004684778 @default.
- W3115358103 creator A5025277383 @default.
- W3115358103 creator A5032586740 @default.
- W3115358103 creator A5059180248 @default.
- W3115358103 date "2021-04-01" @default.
- W3115358103 modified "2023-10-17" @default.
- W3115358103 title "Predicting the components and types of kerogen in shale by combining machine learning with NMR spectra" @default.
- W3115358103 cites W103786192 @default.
- W3115358103 cites W1498436455 @default.
- W3115358103 cites W1976490418 @default.
- W3115358103 cites W1999440281 @default.
- W3115358103 cites W2010611481 @default.
- W3115358103 cites W2011652100 @default.
- W3115358103 cites W2024044215 @default.
- W3115358103 cites W2037363234 @default.
- W3115358103 cites W2041207420 @default.
- W3115358103 cites W2067655208 @default.
- W3115358103 cites W2076063813 @default.
- W3115358103 cites W2077784674 @default.
- W3115358103 cites W2084728071 @default.
- W3115358103 cites W2086837829 @default.
- W3115358103 cites W2091505266 @default.
- W3115358103 cites W2100884728 @default.
- W3115358103 cites W2119102259 @default.
- W3115358103 cites W2177317049 @default.
- W3115358103 cites W2180748755 @default.
- W3115358103 cites W2257979135 @default.
- W3115358103 cites W2264338402 @default.
- W3115358103 cites W2318085486 @default.
- W3115358103 cites W2492586371 @default.
- W3115358103 cites W2561981131 @default.
- W3115358103 cites W2588920986 @default.
- W3115358103 cites W2596069084 @default.
- W3115358103 cites W2622777367 @default.
- W3115358103 cites W2754442758 @default.
- W3115358103 cites W2755453606 @default.
- W3115358103 cites W2756081756 @default.
- W3115358103 cites W2773430132 @default.
- W3115358103 cites W2790979755 @default.
- W3115358103 cites W2884001105 @default.
- W3115358103 cites W2897829486 @default.
- W3115358103 cites W2902907165 @default.
- W3115358103 cites W2931149583 @default.
- W3115358103 cites W2940444403 @default.
- W3115358103 cites W2995721903 @default.
- W3115358103 cites W3035655058 @default.
- W3115358103 cites W3037923004 @default.
- W3115358103 cites W3208674021 @default.
- W3115358103 cites W4205550164 @default.
- W3115358103 cites W4238788102 @default.
- W3115358103 cites W651275778 @default.
- W3115358103 doi "https://doi.org/10.1016/j.fuel.2020.120006" @default.
- W3115358103 hasPublicationYear "2021" @default.
- W3115358103 type Work @default.
- W3115358103 sameAs 3115358103 @default.
- W3115358103 citedByCount "25" @default.
- W3115358103 countsByYear W31153581032021 @default.
- W3115358103 countsByYear W31153581032022 @default.
- W3115358103 countsByYear W31153581032023 @default.
- W3115358103 crossrefType "journal-article" @default.
- W3115358103 hasAuthorship W3115358103A5004684778 @default.
- W3115358103 hasAuthorship W3115358103A5025277383 @default.
- W3115358103 hasAuthorship W3115358103A5032586740 @default.
- W3115358103 hasAuthorship W3115358103A5059180248 @default.
- W3115358103 hasBestOaLocation W31153581032 @default.
- W3115358103 hasConcept C109007969 @default.
- W3115358103 hasConcept C119857082 @default.
- W3115358103 hasConcept C126559015 @default.
- W3115358103 hasConcept C127313418 @default.
- W3115358103 hasConcept C132525143 @default.
- W3115358103 hasConcept C150394285 @default.
- W3115358103 hasConcept C151730666 @default.
- W3115358103 hasConcept C153127940 @default.
- W3115358103 hasConcept C153180895 @default.
- W3115358103 hasConcept C154945302 @default.
- W3115358103 hasConcept C178790620 @default.
- W3115358103 hasConcept C185592680 @default.
- W3115358103 hasConcept C186060115 @default.
- W3115358103 hasConcept C2777207669 @default.
- W3115358103 hasConcept C2779196632 @default.
- W3115358103 hasConcept C41008148 @default.
- W3115358103 hasConcept C80444323 @default.
- W3115358103 hasConcept C86803240 @default.
- W3115358103 hasConceptScore W3115358103C109007969 @default.
- W3115358103 hasConceptScore W3115358103C119857082 @default.
- W3115358103 hasConceptScore W3115358103C126559015 @default.
- W3115358103 hasConceptScore W3115358103C127313418 @default.
- W3115358103 hasConceptScore W3115358103C132525143 @default.
- W3115358103 hasConceptScore W3115358103C150394285 @default.
- W3115358103 hasConceptScore W3115358103C151730666 @default.
- W3115358103 hasConceptScore W3115358103C153127940 @default.
- W3115358103 hasConceptScore W3115358103C153180895 @default.
- W3115358103 hasConceptScore W3115358103C154945302 @default.
- W3115358103 hasConceptScore W3115358103C178790620 @default.
- W3115358103 hasConceptScore W3115358103C185592680 @default.
- W3115358103 hasConceptScore W3115358103C186060115 @default.