Matches in SemOpenAlex for { <https://semopenalex.org/work/W3115431534> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3115431534 endingPage "179" @default.
- W3115431534 startingPage "179" @default.
- W3115431534 abstract "In this paper, to reduce the computational cost of solving semilinear parabolic equations on a tensor product domain Ω⊂ℝ<sup><i>d</i></sup> with <i>d</i> = 2 or 3, some two-scale finite element discretizations are proposed and analyzed. The time derivative in semilinear parabolic equations is approximated by the backward Euler finite difference scheme. The two-scale finite element method is designed for the space discretization. The idea of the two-scale finite element method is based on an understanding of a finite element solution to an elliptic problem on a tensor product domain. The high frequency parts of the finite element solution can be well captured on some univariate fine grids and the low frequency parts can be approximated on a coarse grid. Thus the two-scale finite element approximation is defined as a linear combination of some standard finite element approximations on some univariate fine grids and a coarse grid satisfying <i>H</i> = <i>O</i> (<i>h</i><sup>1/2</sup>), where <i>h</i> and <i>H</i> are the fine and coarse mesh widths, respectively. It is shown theoretically and numerically that the backward Euler two-scale finite element solution not only achieves the same order of accuracy in the <i>H</i><sup>1</sup> (Ω) norm as the backward Euler standard finite element solution, but also reduces the number of degrees of freedom from <i>O</i>(<i>h</i><sup>-<i>d</i></sup>×<i>τ</i><sup>-1</sup>) to <i>O</i>(<i>h</i><sup>-(<i>(d)</i>+1)/2</sup>×<i>τ</i><sup>-1</sup>) where <i>τ</i> is the time step. Consequently the backward Euler two-scale finite element method for semilinear parabolic equations is more efficient than the backward Euler standard finite element method." @default.
- W3115431534 created "2021-01-05" @default.
- W3115431534 creator A5085025467 @default.
- W3115431534 date "2020-01-01" @default.
- W3115431534 modified "2023-10-18" @default.
- W3115431534 title "Two-scale Finite Element Discretizations for Semilinear Parabolic Equations" @default.
- W3115431534 cites W1492326914 @default.
- W3115431534 cites W1975238525 @default.
- W3115431534 cites W1976610942 @default.
- W3115431534 cites W1980455776 @default.
- W3115431534 cites W2000371428 @default.
- W3115431534 cites W2001898036 @default.
- W3115431534 cites W2009524444 @default.
- W3115431534 cites W2010452605 @default.
- W3115431534 cites W2012257418 @default.
- W3115431534 cites W2029191491 @default.
- W3115431534 cites W2035087858 @default.
- W3115431534 cites W2041523977 @default.
- W3115431534 cites W2041568728 @default.
- W3115431534 cites W2044075944 @default.
- W3115431534 cites W2068987297 @default.
- W3115431534 cites W2069961480 @default.
- W3115431534 cites W2082621526 @default.
- W3115431534 cites W2085422562 @default.
- W3115431534 cites W2123948812 @default.
- W3115431534 cites W2143874584 @default.
- W3115431534 cites W2153127767 @default.
- W3115431534 cites W2165607996 @default.
- W3115431534 cites W2316404852 @default.
- W3115431534 cites W2611445291 @default.
- W3115431534 cites W2613213362 @default.
- W3115431534 cites W2800029338 @default.
- W3115431534 cites W2899110386 @default.
- W3115431534 doi "https://doi.org/10.11648/j.acm.20200906.12" @default.
- W3115431534 hasPublicationYear "2020" @default.
- W3115431534 type Work @default.
- W3115431534 sameAs 3115431534 @default.
- W3115431534 citedByCount "0" @default.
- W3115431534 crossrefType "journal-article" @default.
- W3115431534 hasAuthorship W3115431534A5085025467 @default.
- W3115431534 hasBestOaLocation W31154315341 @default.
- W3115431534 hasConcept C121332964 @default.
- W3115431534 hasConcept C134306372 @default.
- W3115431534 hasConcept C135628077 @default.
- W3115431534 hasConcept C144468803 @default.
- W3115431534 hasConcept C17744445 @default.
- W3115431534 hasConcept C187691185 @default.
- W3115431534 hasConcept C191795146 @default.
- W3115431534 hasConcept C199539241 @default.
- W3115431534 hasConcept C202444582 @default.
- W3115431534 hasConcept C24810621 @default.
- W3115431534 hasConcept C2524010 @default.
- W3115431534 hasConcept C33923547 @default.
- W3115431534 hasConcept C43173174 @default.
- W3115431534 hasConcept C4349628 @default.
- W3115431534 hasConcept C51255310 @default.
- W3115431534 hasConcept C73000952 @default.
- W3115431534 hasConcept C768646 @default.
- W3115431534 hasConcept C93949632 @default.
- W3115431534 hasConcept C97355855 @default.
- W3115431534 hasConceptScore W3115431534C121332964 @default.
- W3115431534 hasConceptScore W3115431534C134306372 @default.
- W3115431534 hasConceptScore W3115431534C135628077 @default.
- W3115431534 hasConceptScore W3115431534C144468803 @default.
- W3115431534 hasConceptScore W3115431534C17744445 @default.
- W3115431534 hasConceptScore W3115431534C187691185 @default.
- W3115431534 hasConceptScore W3115431534C191795146 @default.
- W3115431534 hasConceptScore W3115431534C199539241 @default.
- W3115431534 hasConceptScore W3115431534C202444582 @default.
- W3115431534 hasConceptScore W3115431534C24810621 @default.
- W3115431534 hasConceptScore W3115431534C2524010 @default.
- W3115431534 hasConceptScore W3115431534C33923547 @default.
- W3115431534 hasConceptScore W3115431534C43173174 @default.
- W3115431534 hasConceptScore W3115431534C4349628 @default.
- W3115431534 hasConceptScore W3115431534C51255310 @default.
- W3115431534 hasConceptScore W3115431534C73000952 @default.
- W3115431534 hasConceptScore W3115431534C768646 @default.
- W3115431534 hasConceptScore W3115431534C93949632 @default.
- W3115431534 hasConceptScore W3115431534C97355855 @default.
- W3115431534 hasIssue "6" @default.
- W3115431534 hasLocation W31154315341 @default.
- W3115431534 hasOpenAccess W3115431534 @default.
- W3115431534 hasPrimaryLocation W31154315341 @default.
- W3115431534 hasRelatedWork W1555279794 @default.
- W3115431534 hasRelatedWork W1973136543 @default.
- W3115431534 hasRelatedWork W2036738183 @default.
- W3115431534 hasRelatedWork W2122176057 @default.
- W3115431534 hasRelatedWork W2345986836 @default.
- W3115431534 hasRelatedWork W2774409339 @default.
- W3115431534 hasRelatedWork W3115431534 @default.
- W3115431534 hasRelatedWork W4254088695 @default.
- W3115431534 hasRelatedWork W4320736088 @default.
- W3115431534 hasRelatedWork W607333439 @default.
- W3115431534 hasVolume "9" @default.
- W3115431534 isParatext "false" @default.
- W3115431534 isRetracted "false" @default.
- W3115431534 magId "3115431534" @default.
- W3115431534 workType "article" @default.