Matches in SemOpenAlex for { <https://semopenalex.org/work/W3115451856> ?p ?o ?g. }
- W3115451856 abstract "Tracking construction machines in videos is a fundamental step in the automated surveillance of construction productivity, safety, and project progress. However, existing vision-based tracking methods are not able to achieve high tracking precision, robustness, and practical processing speed simultaneously. Occlusions and illumination variations on construction sites also prevent vision-based tracking methods from obtaining optimal tracking performance. To address these challenges, this research proposes a vision-based method, called construction machine tracker (CMT), to track multiple construction machines in videos. CMT consists of three main modules: detection, association, and assignment. The detection module detects construction machines using the deep learning algorithm YOLOv3 in each frame. Then the association module relates the detection results of two consecutive frames, and the assignment module produces the tracking results. In testing, CMT achieved 93.2% in multiple object tracking accuracy (MOTA) and 86.5% in multiple object tracking precision (MOTP) with a processing speed of 20.8 frames per second when tested on four construction videos. The proposed CMT was integrated into a framework of analyzing excavator productivity in earthmoving cycles and achieved 96.9% accuracy." @default.
- W3115451856 created "2021-01-05" @default.
- W3115451856 creator A5012559909 @default.
- W3115451856 creator A5062706653 @default.
- W3115451856 date "2021-03-01" @default.
- W3115451856 modified "2023-10-17" @default.
- W3115451856 title "Vision-Based Method Integrating Deep Learning Detection for Tracking Multiple Construction Machines" @default.
- W3115451856 cites W1531192956 @default.
- W3115451856 cites W1861492603 @default.
- W3115451856 cites W1968200193 @default.
- W3115451856 cites W2004846622 @default.
- W3115451856 cites W2035153336 @default.
- W3115451856 cites W2043900036 @default.
- W3115451856 cites W2046659441 @default.
- W3115451856 cites W2057549046 @default.
- W3115451856 cites W2074735945 @default.
- W3115451856 cites W2081835455 @default.
- W3115451856 cites W2082459479 @default.
- W3115451856 cites W2085102648 @default.
- W3115451856 cites W2088761457 @default.
- W3115451856 cites W2097117768 @default.
- W3115451856 cites W2098604689 @default.
- W3115451856 cites W2111361244 @default.
- W3115451856 cites W2124781496 @default.
- W3115451856 cites W2139047213 @default.
- W3115451856 cites W2139688603 @default.
- W3115451856 cites W2158592639 @default.
- W3115451856 cites W2161879536 @default.
- W3115451856 cites W2209193152 @default.
- W3115451856 cites W2252355370 @default.
- W3115451856 cites W2316883654 @default.
- W3115451856 cites W2343187456 @default.
- W3115451856 cites W2409028366 @default.
- W3115451856 cites W2510934300 @default.
- W3115451856 cites W2512256428 @default.
- W3115451856 cites W2534578893 @default.
- W3115451856 cites W2549139847 @default.
- W3115451856 cites W2599181565 @default.
- W3115451856 cites W2639936844 @default.
- W3115451856 cites W2766984662 @default.
- W3115451856 cites W2768148056 @default.
- W3115451856 cites W2772016598 @default.
- W3115451856 cites W2782274301 @default.
- W3115451856 cites W2791834423 @default.
- W3115451856 cites W2801714535 @default.
- W3115451856 cites W2802595503 @default.
- W3115451856 cites W2803862859 @default.
- W3115451856 cites W2804172331 @default.
- W3115451856 cites W2884367402 @default.
- W3115451856 cites W2884561390 @default.
- W3115451856 cites W2902593794 @default.
- W3115451856 cites W2915431140 @default.
- W3115451856 cites W2942937015 @default.
- W3115451856 cites W2944936691 @default.
- W3115451856 cites W2962934715 @default.
- W3115451856 cites W2963037989 @default.
- W3115451856 cites W2963063317 @default.
- W3115451856 cites W2994999390 @default.
- W3115451856 cites W3006320450 @default.
- W3115451856 cites W3106250896 @default.
- W3115451856 cites W3106651141 @default.
- W3115451856 cites W639708223 @default.
- W3115451856 doi "https://doi.org/10.1061/(asce)cp.1943-5487.0000957" @default.
- W3115451856 hasPublicationYear "2021" @default.
- W3115451856 type Work @default.
- W3115451856 sameAs 3115451856 @default.
- W3115451856 citedByCount "33" @default.
- W3115451856 countsByYear W31154518562021 @default.
- W3115451856 countsByYear W31154518562022 @default.
- W3115451856 countsByYear W31154518562023 @default.
- W3115451856 crossrefType "journal-article" @default.
- W3115451856 hasAuthorship W3115451856A5012559909 @default.
- W3115451856 hasAuthorship W3115451856A5062706653 @default.
- W3115451856 hasConcept C104317684 @default.
- W3115451856 hasConcept C126042441 @default.
- W3115451856 hasConcept C127413603 @default.
- W3115451856 hasConcept C141392084 @default.
- W3115451856 hasConcept C153180895 @default.
- W3115451856 hasConcept C154586513 @default.
- W3115451856 hasConcept C154945302 @default.
- W3115451856 hasConcept C157286648 @default.
- W3115451856 hasConcept C15744967 @default.
- W3115451856 hasConcept C185592680 @default.
- W3115451856 hasConcept C19417346 @default.
- W3115451856 hasConcept C202474056 @default.
- W3115451856 hasConcept C2775936607 @default.
- W3115451856 hasConcept C2776151529 @default.
- W3115451856 hasConcept C2781238097 @default.
- W3115451856 hasConcept C2983325608 @default.
- W3115451856 hasConcept C31972630 @default.
- W3115451856 hasConcept C41008148 @default.
- W3115451856 hasConcept C49937458 @default.
- W3115451856 hasConcept C5339829 @default.
- W3115451856 hasConcept C55493867 @default.
- W3115451856 hasConcept C63479239 @default.
- W3115451856 hasConcept C76155785 @default.
- W3115451856 hasConcept C78519656 @default.
- W3115451856 hasConceptScore W3115451856C104317684 @default.
- W3115451856 hasConceptScore W3115451856C126042441 @default.
- W3115451856 hasConceptScore W3115451856C127413603 @default.