Matches in SemOpenAlex for { <https://semopenalex.org/work/W3115458898> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3115458898 endingPage "165" @default.
- W3115458898 startingPage "155" @default.
- W3115458898 abstract "A connectional brain template (CBT) is a normalized graph-based representation of a population of brain networks —also regarded as an ‘average’ connectome. CBTs are powerful tools for creating representative maps of brain connectivity in typical and atypical populations. Particularly, estimating a well-centered and representative CBT for populations of multi-view brain networks (MVBN) is more challenging since these networks sit on complex manifolds and there is no easy way to fuse different heterogeneous network views. This problem remains unexplored with the exception of a few recent works rooted in the assumption that the relationship between connectomes are mostly linear. However, such an assumption fails to capture complex patterns and non-linear variation across individuals. Besides, existing methods are simply composed of sequential MVBN processing blocks without any feedback mechanism, leading to error accumulation. To address these issues, we propose Deep Graph Normalizer (DGN), the first geometric deep learning (GDL) architecture for normalizing a population of MVBNs by integrating them into a single connectional brain template. Our end-to-end DGN learns how to fuse multi-view brain networks while capturing non-linear patterns across subjects and preserving brain graph topological properties by capitalizing on graph convolutional neural networks. We also introduce a randomized weighted loss function which also acts as a regularizer to minimize the distance between the population of MVBNs and the estimated CBT, thereby enforcing its centeredness. We demonstrate that DGN significantly outperforms existing state-of-the-art methods on estimating CBTs on both small-scale and large-scale connectomic datasets in terms of both representativeness and discriminability (i.e., identifying distinctive connectivities fingerprinting each brain network population). Our DGN code is available at https://github.com/basiralab/DGN." @default.
- W3115458898 created "2021-01-05" @default.
- W3115458898 creator A5004621251 @default.
- W3115458898 creator A5048784346 @default.
- W3115458898 date "2020-01-01" @default.
- W3115458898 modified "2023-10-14" @default.
- W3115458898 title "Deep Graph Normalizer: A Geometric Deep Learning Approach for Estimating Connectional Brain Templates" @default.
- W3115458898 cites W1987219048 @default.
- W3115458898 cites W2003064434 @default.
- W3115458898 cites W2020519533 @default.
- W3115458898 cites W2096020629 @default.
- W3115458898 cites W2151130155 @default.
- W3115458898 cites W2155513557 @default.
- W3115458898 cites W2167868121 @default.
- W3115458898 cites W2169900784 @default.
- W3115458898 cites W2414152383 @default.
- W3115458898 cites W2529392927 @default.
- W3115458898 cites W2606202972 @default.
- W3115458898 cites W2809455333 @default.
- W3115458898 cites W2889302076 @default.
- W3115458898 cites W2892495880 @default.
- W3115458898 cites W2945589020 @default.
- W3115458898 cites W2964236544 @default.
- W3115458898 cites W2978335131 @default.
- W3115458898 cites W4241074797 @default.
- W3115458898 doi "https://doi.org/10.1007/978-3-030-59728-3_16" @default.
- W3115458898 hasPublicationYear "2020" @default.
- W3115458898 type Work @default.
- W3115458898 sameAs 3115458898 @default.
- W3115458898 citedByCount "14" @default.
- W3115458898 countsByYear W31154588982021 @default.
- W3115458898 countsByYear W31154588982022 @default.
- W3115458898 countsByYear W31154588982023 @default.
- W3115458898 crossrefType "book-chapter" @default.
- W3115458898 hasAuthorship W3115458898A5004621251 @default.
- W3115458898 hasAuthorship W3115458898A5048784346 @default.
- W3115458898 hasBestOaLocation W31154588982 @default.
- W3115458898 hasConcept C108583219 @default.
- W3115458898 hasConcept C119857082 @default.
- W3115458898 hasConcept C132525143 @default.
- W3115458898 hasConcept C144024400 @default.
- W3115458898 hasConcept C149923435 @default.
- W3115458898 hasConcept C153180895 @default.
- W3115458898 hasConcept C154945302 @default.
- W3115458898 hasConcept C169760540 @default.
- W3115458898 hasConcept C2908647359 @default.
- W3115458898 hasConcept C3018011982 @default.
- W3115458898 hasConcept C41008148 @default.
- W3115458898 hasConcept C45715564 @default.
- W3115458898 hasConcept C80444323 @default.
- W3115458898 hasConcept C81363708 @default.
- W3115458898 hasConcept C86803240 @default.
- W3115458898 hasConceptScore W3115458898C108583219 @default.
- W3115458898 hasConceptScore W3115458898C119857082 @default.
- W3115458898 hasConceptScore W3115458898C132525143 @default.
- W3115458898 hasConceptScore W3115458898C144024400 @default.
- W3115458898 hasConceptScore W3115458898C149923435 @default.
- W3115458898 hasConceptScore W3115458898C153180895 @default.
- W3115458898 hasConceptScore W3115458898C154945302 @default.
- W3115458898 hasConceptScore W3115458898C169760540 @default.
- W3115458898 hasConceptScore W3115458898C2908647359 @default.
- W3115458898 hasConceptScore W3115458898C3018011982 @default.
- W3115458898 hasConceptScore W3115458898C41008148 @default.
- W3115458898 hasConceptScore W3115458898C45715564 @default.
- W3115458898 hasConceptScore W3115458898C80444323 @default.
- W3115458898 hasConceptScore W3115458898C81363708 @default.
- W3115458898 hasConceptScore W3115458898C86803240 @default.
- W3115458898 hasLocation W31154588981 @default.
- W3115458898 hasLocation W31154588982 @default.
- W3115458898 hasLocation W31154588983 @default.
- W3115458898 hasLocation W31154588984 @default.
- W3115458898 hasOpenAccess W3115458898 @default.
- W3115458898 hasPrimaryLocation W31154588981 @default.
- W3115458898 hasRelatedWork W2731899572 @default.
- W3115458898 hasRelatedWork W2999805992 @default.
- W3115458898 hasRelatedWork W3116150086 @default.
- W3115458898 hasRelatedWork W3133861977 @default.
- W3115458898 hasRelatedWork W4200173597 @default.
- W3115458898 hasRelatedWork W4223943233 @default.
- W3115458898 hasRelatedWork W4291897433 @default.
- W3115458898 hasRelatedWork W4312417841 @default.
- W3115458898 hasRelatedWork W4321369474 @default.
- W3115458898 hasRelatedWork W4380075502 @default.
- W3115458898 isParatext "false" @default.
- W3115458898 isRetracted "false" @default.
- W3115458898 magId "3115458898" @default.
- W3115458898 workType "book-chapter" @default.