Matches in SemOpenAlex for { <https://semopenalex.org/work/W3115492719> ?p ?o ?g. }
- W3115492719 endingPage "1560" @default.
- W3115492719 startingPage "1549" @default.
- W3115492719 abstract "Global biodiversity is declining at rates faster than at any other point in human history. Experimental manipulations at small spatial scales have demonstrated that communities with fewer species consistently produce less biomass than higher diversity communities. Understanding the consequences of the global extinction crisis for ecosystem functioning requires understanding how local experimental results are likely to change with increasing spatial and temporal scales and from experiments to naturally assembled systems. Scaling across time and space in a changing world requires baseline predictions. Here, we provide a graphical null model for area scaling of biodiversity–ecosystem functioning relationships using observed macroecological patterns: the species–area curve and the biomass–area curve. We use species–area and biomass–area curves to predict how species richness–biomass relationships are likely to change with increasing sampling extent. We then validate these predictions with data from two naturally assembled ecosystems: a Minnesota savanna and a Panamanian tropical dry forest. Our graphical null model predicts that biodiversity–ecosystem functioning relationships are scale-dependent. However, we note two important caveats. First, our results indicate an apparent contradiction between predictions based on measurements in biodiversity–ecosystem functioning experiments and from scaling theory. When ecosystem functioning is measured as per unit area (e.g. biomass per m2), as is common in biodiversity–ecosystem functioning experiments, the slope of the biodiversity ecosystem functioning relationship should decrease with increasing scale. Alternatively, when ecosystem functioning is not measured per unit area (e.g. summed total biomass), as is common in scaling studies, the slope of the biodiversity–ecosystem functioning relationship should increase with increasing spatial scale. Second, the underlying macroecological patterns of biodiversity experiments are predictably different from some naturally assembled systems. These differences between the underlying patterns of experiments and naturally assembled systems may enable us to better understand when patterns from biodiversity–ecosystem functioning experiments will be valid in naturally assembled systems. Synthesis. This paper provides a simple graphical null model that can be extended to any relationship between biodiversity and any ecosystem functioning across space or time. Furthermore, these predictions provide crucial insights into how and when we may be able to extend results from small-scale biodiversity experiments to naturally assembled regional and global ecosystems where biodiversity is changing." @default.
- W3115492719 created "2021-01-05" @default.
- W3115492719 creator A5000454336 @default.
- W3115492719 creator A5015215935 @default.
- W3115492719 creator A5016026301 @default.
- W3115492719 creator A5016353787 @default.
- W3115492719 creator A5044264078 @default.
- W3115492719 creator A5047696075 @default.
- W3115492719 creator A5053252845 @default.
- W3115492719 creator A5060669794 @default.
- W3115492719 creator A5061716797 @default.
- W3115492719 creator A5062290591 @default.
- W3115492719 creator A5070052781 @default.
- W3115492719 creator A5074453410 @default.
- W3115492719 date "2021-01-19" @default.
- W3115492719 modified "2023-10-15" @default.
- W3115492719 title "A graphical null model for scaling biodiversity–ecosystem functioning relationships" @default.
- W3115492719 cites W1975003732 @default.
- W3115492719 cites W1977362130 @default.
- W3115492719 cites W1979923968 @default.
- W3115492719 cites W1986144250 @default.
- W3115492719 cites W1990370234 @default.
- W3115492719 cites W2006891302 @default.
- W3115492719 cites W2010635848 @default.
- W3115492719 cites W2018328348 @default.
- W3115492719 cites W2022293658 @default.
- W3115492719 cites W2027370059 @default.
- W3115492719 cites W2035810349 @default.
- W3115492719 cites W2038462691 @default.
- W3115492719 cites W2045076507 @default.
- W3115492719 cites W2060806362 @default.
- W3115492719 cites W2070319443 @default.
- W3115492719 cites W2088837665 @default.
- W3115492719 cites W2090050830 @default.
- W3115492719 cites W2090483345 @default.
- W3115492719 cites W2091395676 @default.
- W3115492719 cites W2102064779 @default.
- W3115492719 cites W2103317434 @default.
- W3115492719 cites W2105872868 @default.
- W3115492719 cites W2109814966 @default.
- W3115492719 cites W2113079967 @default.
- W3115492719 cites W2114983539 @default.
- W3115492719 cites W2130811469 @default.
- W3115492719 cites W2130811880 @default.
- W3115492719 cites W2132346903 @default.
- W3115492719 cites W2134351926 @default.
- W3115492719 cites W2139602348 @default.
- W3115492719 cites W2141049972 @default.
- W3115492719 cites W2146145855 @default.
- W3115492719 cites W2146970681 @default.
- W3115492719 cites W2150637233 @default.
- W3115492719 cites W2161139387 @default.
- W3115492719 cites W2168592174 @default.
- W3115492719 cites W2169286869 @default.
- W3115492719 cites W2173550487 @default.
- W3115492719 cites W2327291796 @default.
- W3115492719 cites W2497923020 @default.
- W3115492719 cites W2515058020 @default.
- W3115492719 cites W2519343095 @default.
- W3115492719 cites W2560970169 @default.
- W3115492719 cites W2564781295 @default.
- W3115492719 cites W2618505311 @default.
- W3115492719 cites W2716349577 @default.
- W3115492719 cites W2753632495 @default.
- W3115492719 cites W2776140193 @default.
- W3115492719 cites W2806624926 @default.
- W3115492719 cites W2910402062 @default.
- W3115492719 cites W2961647394 @default.
- W3115492719 cites W2980577289 @default.
- W3115492719 cites W2981811277 @default.
- W3115492719 cites W3003348492 @default.
- W3115492719 cites W3010403098 @default.
- W3115492719 cites W3028823434 @default.
- W3115492719 cites W3049498585 @default.
- W3115492719 doi "https://doi.org/10.1111/1365-2745.13578" @default.
- W3115492719 hasPublicationYear "2021" @default.
- W3115492719 type Work @default.
- W3115492719 sameAs 3115492719 @default.
- W3115492719 citedByCount "11" @default.
- W3115492719 countsByYear W31154927192021 @default.
- W3115492719 countsByYear W31154927192022 @default.
- W3115492719 countsByYear W31154927192023 @default.
- W3115492719 crossrefType "journal-article" @default.
- W3115492719 hasAuthorship W3115492719A5000454336 @default.
- W3115492719 hasAuthorship W3115492719A5015215935 @default.
- W3115492719 hasAuthorship W3115492719A5016026301 @default.
- W3115492719 hasAuthorship W3115492719A5016353787 @default.
- W3115492719 hasAuthorship W3115492719A5044264078 @default.
- W3115492719 hasAuthorship W3115492719A5047696075 @default.
- W3115492719 hasAuthorship W3115492719A5053252845 @default.
- W3115492719 hasAuthorship W3115492719A5060669794 @default.
- W3115492719 hasAuthorship W3115492719A5061716797 @default.
- W3115492719 hasAuthorship W3115492719A5062290591 @default.
- W3115492719 hasAuthorship W3115492719A5070052781 @default.
- W3115492719 hasAuthorship W3115492719A5074453410 @default.
- W3115492719 hasBestOaLocation W31154927191 @default.
- W3115492719 hasConcept C107826830 @default.
- W3115492719 hasConcept C110872660 @default.