Matches in SemOpenAlex for { <https://semopenalex.org/work/W3115591981> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3115591981 abstract "Abstract To evaluate the quality of Daqu, the change of moisture content during the fermentation process is an important indicator. To improve the accuracy of measuring the moisture content, we studied a measuring method that used a near‐infrared hyperspectral imaging technique. In the process of using multigranularity cascade forest algorithm to do deep learning on the detection task, two improvements were made to improve detection accuracy. One was to establish a multigranularity cascade forest model with various scanning window combinations to solve the problem of distribution offset in the prediction results. The other was to do continuum removal processing to obtain enhanced spectral data from the sample spectral data. The results showed that the multigranularity cascade forest was markedly better than a support vector machine and a backpropagation neural network. The coefficient of determination of the prediction set ( R 2) and root mean square error of the Prediction set reached 0.9977 and 0.0021, respectively. The study results indicated that the hyperspectral imaging technique could achieve highly accurate detection and distribution visualization of the moisture content of Daqu during the fermentation process. Practical applications Daqu, a flavoring agent and fermentation starter, plays a vital role in the solid‐state liquor brewing process. During the fermentation process, moisture content is an important indicator for quality evaluation of Daqu. Therefore, it is highly important to detect the moisture content in Daqu quickly and accurately. The hyperspectral imaging technique, as an emerging detection technology, has advantages that traditional detection methods do not have, so that the disadvantages of traditional detection can be overcome. In our study, the hyperspectral imaging technique could achieve high‐precision detection of the moisture content of Daqu during the fermentation process, indicating that hyperspectral technology could be used to detect Daqu moisture content. Moreover, this method has great potential for real‐time indicators detection in winery for future work." @default.
- W3115591981 created "2021-01-05" @default.
- W3115591981 creator A5022634051 @default.
- W3115591981 creator A5024010764 @default.
- W3115591981 creator A5057083556 @default.
- W3115591981 creator A5064954907 @default.
- W3115591981 creator A5081128487 @default.
- W3115591981 date "2020-12-28" @default.
- W3115591981 modified "2023-09-30" @default.
- W3115591981 title "Multigranularity cascade forest algorithm based on hyperspectral imaging to detect moisture content in Daqu" @default.
- W3115591981 cites W2055862062 @default.
- W3115591981 cites W2063588488 @default.
- W3115591981 cites W2087710837 @default.
- W3115591981 cites W2773863882 @default.
- W3115591981 cites W2797303008 @default.
- W3115591981 cites W2951292733 @default.
- W3115591981 cites W2991354030 @default.
- W3115591981 cites W3011541426 @default.
- W3115591981 cites W3014002706 @default.
- W3115591981 cites W3017164408 @default.
- W3115591981 cites W3017699233 @default.
- W3115591981 cites W3026086014 @default.
- W3115591981 cites W3026833878 @default.
- W3115591981 cites W3028231515 @default.
- W3115591981 cites W3035611289 @default.
- W3115591981 cites W3036170986 @default.
- W3115591981 cites W3037415566 @default.
- W3115591981 cites W3045802260 @default.
- W3115591981 doi "https://doi.org/10.1111/jfpe.13633" @default.
- W3115591981 hasPublicationYear "2020" @default.
- W3115591981 type Work @default.
- W3115591981 sameAs 3115591981 @default.
- W3115591981 citedByCount "4" @default.
- W3115591981 countsByYear W31155919812021 @default.
- W3115591981 countsByYear W31155919812022 @default.
- W3115591981 countsByYear W31155919812023 @default.
- W3115591981 crossrefType "journal-article" @default.
- W3115591981 hasAuthorship W3115591981A5022634051 @default.
- W3115591981 hasAuthorship W3115591981A5024010764 @default.
- W3115591981 hasAuthorship W3115591981A5057083556 @default.
- W3115591981 hasAuthorship W3115591981A5064954907 @default.
- W3115591981 hasAuthorship W3115591981A5081128487 @default.
- W3115591981 hasConcept C105795698 @default.
- W3115591981 hasConcept C11413529 @default.
- W3115591981 hasConcept C12267149 @default.
- W3115591981 hasConcept C127313418 @default.
- W3115591981 hasConcept C127413603 @default.
- W3115591981 hasConcept C139945424 @default.
- W3115591981 hasConcept C154945302 @default.
- W3115591981 hasConcept C159078339 @default.
- W3115591981 hasConcept C187320778 @default.
- W3115591981 hasConcept C24939127 @default.
- W3115591981 hasConcept C33923547 @default.
- W3115591981 hasConcept C41008148 @default.
- W3115591981 hasConcept C62649853 @default.
- W3115591981 hasConceptScore W3115591981C105795698 @default.
- W3115591981 hasConceptScore W3115591981C11413529 @default.
- W3115591981 hasConceptScore W3115591981C12267149 @default.
- W3115591981 hasConceptScore W3115591981C127313418 @default.
- W3115591981 hasConceptScore W3115591981C127413603 @default.
- W3115591981 hasConceptScore W3115591981C139945424 @default.
- W3115591981 hasConceptScore W3115591981C154945302 @default.
- W3115591981 hasConceptScore W3115591981C159078339 @default.
- W3115591981 hasConceptScore W3115591981C187320778 @default.
- W3115591981 hasConceptScore W3115591981C24939127 @default.
- W3115591981 hasConceptScore W3115591981C33923547 @default.
- W3115591981 hasConceptScore W3115591981C41008148 @default.
- W3115591981 hasConceptScore W3115591981C62649853 @default.
- W3115591981 hasIssue "3" @default.
- W3115591981 hasLocation W31155919811 @default.
- W3115591981 hasOpenAccess W3115591981 @default.
- W3115591981 hasPrimaryLocation W31155919811 @default.
- W3115591981 hasRelatedWork W2014286142 @default.
- W3115591981 hasRelatedWork W2083270190 @default.
- W3115591981 hasRelatedWork W2188660374 @default.
- W3115591981 hasRelatedWork W2385371209 @default.
- W3115591981 hasRelatedWork W2533978591 @default.
- W3115591981 hasRelatedWork W2612882618 @default.
- W3115591981 hasRelatedWork W2883275326 @default.
- W3115591981 hasRelatedWork W2948825694 @default.
- W3115591981 hasRelatedWork W2998323711 @default.
- W3115591981 hasRelatedWork W1991437568 @default.
- W3115591981 hasVolume "44" @default.
- W3115591981 isParatext "false" @default.
- W3115591981 isRetracted "false" @default.
- W3115591981 magId "3115591981" @default.
- W3115591981 workType "article" @default.