Matches in SemOpenAlex for { <https://semopenalex.org/work/W3115637534> ?p ?o ?g. }
- W3115637534 endingPage "345" @default.
- W3115637534 startingPage "325" @default.
- W3115637534 abstract "The purpose of this study was to examine the performance of Naive Bayes, k-nearest neighborhood, neural networks, and logistic regression analysis in terms of sample size and test data rate in classifying students according to their mathematics performance. The target population was 62728 students in the 15-year-old group who were participated in the Programme for International Student Assessment (PISA) in 2012 from The Organisation for Economic Co-operation and Development (OECD) countries. The performance of each algorithm was tested by using 11%, 22%, 33%, 44% and 55% of each dataset for small (500 students), medium (1000 students) and large (5000 students) sample sizes. 100 replications were performed for each analysis. As the evaluation criteria, accuracy rates, RMSE values, and total elapsed time were used. RMSE values for each algorithm were statistically compared by using Friedman and Wilcoxon tests. The results revealed that while the classification performance of the methods increased as the sample size increased, the increase of training data ratio had different effects on the performance of the algorithms. The Naive Bayes showed high performance even in small samples, performed the analyzes very quickly, and was not affected by the change in the training data ratio. Logistic regression analysis was the most effective method in large samples but had a poor performance in small samples. While neural networks showed a similar tendency, its overall performance was lower than Naive Bayes and logistic regression. The lowest performances in all conditions were obtained by the k-nearest neighborhood algorithm." @default.
- W3115637534 created "2021-01-05" @default.
- W3115637534 creator A5027433606 @default.
- W3115637534 creator A5085692851 @default.
- W3115637534 date "2020-12-30" @default.
- W3115637534 modified "2023-09-24" @default.
- W3115637534 title "Comparison of Data Mining Classification Algorithms on Educational Data under Different Conditions" @default.
- W3115637534 cites W1567394263 @default.
- W3115637534 cites W1597612134 @default.
- W3115637534 cites W1838166184 @default.
- W3115637534 cites W1838166440 @default.
- W3115637534 cites W1980989611 @default.
- W3115637534 cites W2004147962 @default.
- W3115637534 cites W2019583087 @default.
- W3115637534 cites W2027711578 @default.
- W3115637534 cites W2031167046 @default.
- W3115637534 cites W2031540871 @default.
- W3115637534 cites W2036734911 @default.
- W3115637534 cites W2040615655 @default.
- W3115637534 cites W2040884411 @default.
- W3115637534 cites W2051885135 @default.
- W3115637534 cites W2053154970 @default.
- W3115637534 cites W2079100340 @default.
- W3115637534 cites W2087556827 @default.
- W3115637534 cites W2087625952 @default.
- W3115637534 cites W2102831150 @default.
- W3115637534 cites W2103672843 @default.
- W3115637534 cites W2105223996 @default.
- W3115637534 cites W2132886902 @default.
- W3115637534 cites W2133990480 @default.
- W3115637534 cites W2137839571 @default.
- W3115637534 cites W2138334515 @default.
- W3115637534 cites W2158628337 @default.
- W3115637534 cites W2175650622 @default.
- W3115637534 cites W2250817048 @default.
- W3115637534 cites W2255539840 @default.
- W3115637534 cites W2430859375 @default.
- W3115637534 cites W2763734094 @default.
- W3115637534 cites W2993603560 @default.
- W3115637534 cites W3019949964 @default.
- W3115637534 cites W3124021536 @default.
- W3115637534 cites W4244238212 @default.
- W3115637534 cites W4253578872 @default.
- W3115637534 cites W812069187 @default.
- W3115637534 cites W1971764501 @default.
- W3115637534 doi "https://doi.org/10.21031/epod.696664" @default.
- W3115637534 hasPublicationYear "2020" @default.
- W3115637534 type Work @default.
- W3115637534 sameAs 3115637534 @default.
- W3115637534 citedByCount "3" @default.
- W3115637534 countsByYear W31156375342021 @default.
- W3115637534 countsByYear W31156375342022 @default.
- W3115637534 crossrefType "journal-article" @default.
- W3115637534 hasAuthorship W3115637534A5027433606 @default.
- W3115637534 hasAuthorship W3115637534A5085692851 @default.
- W3115637534 hasBestOaLocation W31156375341 @default.
- W3115637534 hasConcept C105795698 @default.
- W3115637534 hasConcept C107673813 @default.
- W3115637534 hasConcept C11413529 @default.
- W3115637534 hasConcept C119857082 @default.
- W3115637534 hasConcept C12267149 @default.
- W3115637534 hasConcept C12868164 @default.
- W3115637534 hasConcept C129848803 @default.
- W3115637534 hasConcept C144024400 @default.
- W3115637534 hasConcept C149923435 @default.
- W3115637534 hasConcept C151956035 @default.
- W3115637534 hasConcept C154945302 @default.
- W3115637534 hasConcept C185592680 @default.
- W3115637534 hasConcept C198531522 @default.
- W3115637534 hasConcept C206041023 @default.
- W3115637534 hasConcept C207201462 @default.
- W3115637534 hasConcept C2908647359 @default.
- W3115637534 hasConcept C32809988 @default.
- W3115637534 hasConcept C33923547 @default.
- W3115637534 hasConcept C41008148 @default.
- W3115637534 hasConcept C43617362 @default.
- W3115637534 hasConcept C52001869 @default.
- W3115637534 hasConceptScore W3115637534C105795698 @default.
- W3115637534 hasConceptScore W3115637534C107673813 @default.
- W3115637534 hasConceptScore W3115637534C11413529 @default.
- W3115637534 hasConceptScore W3115637534C119857082 @default.
- W3115637534 hasConceptScore W3115637534C12267149 @default.
- W3115637534 hasConceptScore W3115637534C12868164 @default.
- W3115637534 hasConceptScore W3115637534C129848803 @default.
- W3115637534 hasConceptScore W3115637534C144024400 @default.
- W3115637534 hasConceptScore W3115637534C149923435 @default.
- W3115637534 hasConceptScore W3115637534C151956035 @default.
- W3115637534 hasConceptScore W3115637534C154945302 @default.
- W3115637534 hasConceptScore W3115637534C185592680 @default.
- W3115637534 hasConceptScore W3115637534C198531522 @default.
- W3115637534 hasConceptScore W3115637534C206041023 @default.
- W3115637534 hasConceptScore W3115637534C207201462 @default.
- W3115637534 hasConceptScore W3115637534C2908647359 @default.
- W3115637534 hasConceptScore W3115637534C32809988 @default.
- W3115637534 hasConceptScore W3115637534C33923547 @default.
- W3115637534 hasConceptScore W3115637534C41008148 @default.
- W3115637534 hasConceptScore W3115637534C43617362 @default.
- W3115637534 hasConceptScore W3115637534C52001869 @default.