Matches in SemOpenAlex for { <https://semopenalex.org/work/W3115649290> ?p ?o ?g. }
- W3115649290 endingPage "244108" @default.
- W3115649290 startingPage "244108" @default.
- W3115649290 abstract "Markov chains can accurately model the state-to-state dynamics of a wide range of complex systems, but the underlying transition matrix is ill-conditioned when the dynamics feature a separation of timescales. Graph transformation (GT) provides a numerically stable method to compute exact mean first passage times (MFPTs) between states, which are the usual dynamical observables in continuous-time Markov chains (CTMCs). Here, we generalize the GT algorithm to discrete-time Markov chains (DTMCs), which are commonly estimated from simulation data, for example, in the Markov state model approach. We then consider the dimensionality reduction of CTMCs and DTMCs, which aids model interpretation and facilitates more expensive computations, including sampling of pathways. We perform a detailed numerical analysis of existing methods to compute the optimal reduced CTMC, given a partitioning of the network into metastable communities (macrostates) of nodes (microstates). We show that approaches based on linear algebra encounter numerical problems that arise from the requisite metastability. We propose an alternative approach using GT to compute the matrix of intermicrostate MFPTs in the original Markov chain, from which a matrix of weighted intermacrostate MFPTs can be obtained. We also propose an approximation to the weighted-MFPT matrix in the strongly metastable limit. Inversion of the weighted-MFPT matrix, which is better conditioned than the matrices that must be inverted in alternative dimensionality reduction schemes, then yields the optimal reduced Markov chain. The superior numerical stability of the GT approach therefore enables us to realize optimal Markovian coarse-graining of systems with rare event dynamics." @default.
- W3115649290 created "2021-01-05" @default.
- W3115649290 creator A5022301289 @default.
- W3115649290 creator A5074566299 @default.
- W3115649290 creator A5075968393 @default.
- W3115649290 creator A5085038666 @default.
- W3115649290 date "2020-12-28" @default.
- W3115649290 modified "2023-09-25" @default.
- W3115649290 title "Optimal dimensionality reduction of Markov chains using graph transformation" @default.
- W3115649290 cites W1539886572 @default.
- W3115649290 cites W1552548571 @default.
- W3115649290 cites W1577071533 @default.
- W3115649290 cites W1746449354 @default.
- W3115649290 cites W1831580741 @default.
- W3115649290 cites W1966781403 @default.
- W3115649290 cites W1969139579 @default.
- W3115649290 cites W1970064696 @default.
- W3115649290 cites W1972521646 @default.
- W3115649290 cites W1972578359 @default.
- W3115649290 cites W1979070806 @default.
- W3115649290 cites W1980411035 @default.
- W3115649290 cites W1983872858 @default.
- W3115649290 cites W1984161223 @default.
- W3115649290 cites W1985196112 @default.
- W3115649290 cites W1987834301 @default.
- W3115649290 cites W1987977794 @default.
- W3115649290 cites W1988914905 @default.
- W3115649290 cites W1989695246 @default.
- W3115649290 cites W1990144193 @default.
- W3115649290 cites W1990238127 @default.
- W3115649290 cites W1991051440 @default.
- W3115649290 cites W1999028753 @default.
- W3115649290 cites W2000134643 @default.
- W3115649290 cites W2005325188 @default.
- W3115649290 cites W2005349160 @default.
- W3115649290 cites W2010005232 @default.
- W3115649290 cites W2012029966 @default.
- W3115649290 cites W2016182357 @default.
- W3115649290 cites W2017896410 @default.
- W3115649290 cites W2019214951 @default.
- W3115649290 cites W2019457726 @default.
- W3115649290 cites W2019619405 @default.
- W3115649290 cites W2022794769 @default.
- W3115649290 cites W2023288091 @default.
- W3115649290 cites W2023581414 @default.
- W3115649290 cites W2025899185 @default.
- W3115649290 cites W2028192443 @default.
- W3115649290 cites W2028836627 @default.
- W3115649290 cites W2030995892 @default.
- W3115649290 cites W2032212734 @default.
- W3115649290 cites W2034727050 @default.
- W3115649290 cites W2036213650 @default.
- W3115649290 cites W2038336192 @default.
- W3115649290 cites W2039100300 @default.
- W3115649290 cites W2039443441 @default.
- W3115649290 cites W2040011373 @default.
- W3115649290 cites W2040761464 @default.
- W3115649290 cites W2042624802 @default.
- W3115649290 cites W2044049502 @default.
- W3115649290 cites W2044811734 @default.
- W3115649290 cites W2048487951 @default.
- W3115649290 cites W2048659456 @default.
- W3115649290 cites W2048743192 @default.
- W3115649290 cites W2049517799 @default.
- W3115649290 cites W2050358793 @default.
- W3115649290 cites W2051917325 @default.
- W3115649290 cites W2052898451 @default.
- W3115649290 cites W2055417690 @default.
- W3115649290 cites W2055484248 @default.
- W3115649290 cites W2056551379 @default.
- W3115649290 cites W2057847103 @default.
- W3115649290 cites W2058822320 @default.
- W3115649290 cites W2058837004 @default.
- W3115649290 cites W2059029453 @default.
- W3115649290 cites W2067693901 @default.
- W3115649290 cites W2068741469 @default.
- W3115649290 cites W2069092525 @default.
- W3115649290 cites W2069620421 @default.
- W3115649290 cites W2073622411 @default.
- W3115649290 cites W207440351 @default.
- W3115649290 cites W2076824742 @default.
- W3115649290 cites W2077115916 @default.
- W3115649290 cites W2081337768 @default.
- W3115649290 cites W2081647223 @default.
- W3115649290 cites W2085041456 @default.
- W3115649290 cites W2085213650 @default.
- W3115649290 cites W2085937603 @default.
- W3115649290 cites W2086608546 @default.
- W3115649290 cites W2088206585 @default.
- W3115649290 cites W2088941628 @default.
- W3115649290 cites W2089618458 @default.
- W3115649290 cites W2090987881 @default.
- W3115649290 cites W2091169817 @default.
- W3115649290 cites W2092536437 @default.
- W3115649290 cites W2095921114 @default.
- W3115649290 cites W2120595908 @default.
- W3115649290 cites W2127048411 @default.
- W3115649290 cites W2129842602 @default.