Matches in SemOpenAlex for { <https://semopenalex.org/work/W3115652015> ?p ?o ?g. }
- W3115652015 endingPage "2952" @default.
- W3115652015 startingPage "2936" @default.
- W3115652015 abstract "Enormous data are continuously collected by the structural health monitoring system of civil infrastructures. The structural health monitoring data inevitably involve anomalies caused by sensors, transmission errors, or abnormal structural behaviors. It is important to identify the anomalies and find their origin (e.g. sensor fault or structural damage) to make correct interventions. Moreover, online anomaly identification of the structural health monitoring data is critical for timely structural condition assessment and decision-making. This study proposes an online approach for detecting anomalies of the structural health monitoring data based on the Bayesian dynamic linear model. In particular, Bayesian dynamic linear model, consisting of various components, is implemented to characterize the feature of real-time measurements. Expectation maximization algorithm and Kalman smoother are combined to estimate the Bayesian dynamic linear model parameters and generate log-likelihood functions. The subspace identification method is introduced to overcome the initialization issue of the expectation maximization algorithm. The log-likelihood difference of consecutive time steps is then used to determine thresholds without introducing extra anomaly detectors. The proposed Bayesian dynamic linear model-based approach is first illustrated by the simulation data and then applied to the structural health monitoring data collected from two long-span bridges. The results indicate that the proposed method exhibits good accuracy and high computational efficiency and also allows for reconstructing the strain measurements to replace anomalies." @default.
- W3115652015 created "2021-01-05" @default.
- W3115652015 creator A5001004351 @default.
- W3115652015 creator A5009126710 @default.
- W3115652015 creator A5014125206 @default.
- W3115652015 creator A5017963617 @default.
- W3115652015 creator A5072773646 @default.
- W3115652015 date "2020-12-20" @default.
- W3115652015 modified "2023-10-02" @default.
- W3115652015 title "Anomaly detection of structural health monitoring data using the maximum likelihood estimation-based Bayesian dynamic linear model" @default.
- W3115652015 cites W1590183771 @default.
- W3115652015 cites W1619215523 @default.
- W3115652015 cites W1964601671 @default.
- W3115652015 cites W1965606617 @default.
- W3115652015 cites W1980470865 @default.
- W3115652015 cites W2007201064 @default.
- W3115652015 cites W2027456229 @default.
- W3115652015 cites W2057544289 @default.
- W3115652015 cites W2080378870 @default.
- W3115652015 cites W2087559219 @default.
- W3115652015 cites W2110697993 @default.
- W3115652015 cites W2128006912 @default.
- W3115652015 cites W2158694395 @default.
- W3115652015 cites W2470344286 @default.
- W3115652015 cites W2479949979 @default.
- W3115652015 cites W2515822248 @default.
- W3115652015 cites W2531036915 @default.
- W3115652015 cites W2592313419 @default.
- W3115652015 cites W2611503217 @default.
- W3115652015 cites W2616330645 @default.
- W3115652015 cites W2619830056 @default.
- W3115652015 cites W2620661538 @default.
- W3115652015 cites W2781206324 @default.
- W3115652015 cites W2790962085 @default.
- W3115652015 cites W2791957585 @default.
- W3115652015 cites W2797862627 @default.
- W3115652015 cites W2808041948 @default.
- W3115652015 cites W2809064761 @default.
- W3115652015 cites W2889485154 @default.
- W3115652015 cites W2902164950 @default.
- W3115652015 cites W2915094565 @default.
- W3115652015 cites W2944787403 @default.
- W3115652015 cites W2958658808 @default.
- W3115652015 cites W2963978760 @default.
- W3115652015 cites W2966429468 @default.
- W3115652015 cites W2996834926 @default.
- W3115652015 cites W3002183519 @default.
- W3115652015 cites W3021074443 @default.
- W3115652015 cites W4235292672 @default.
- W3115652015 cites W4252958130 @default.
- W3115652015 cites W425539784 @default.
- W3115652015 doi "https://doi.org/10.1177/1475921720977020" @default.
- W3115652015 hasPublicationYear "2020" @default.
- W3115652015 type Work @default.
- W3115652015 sameAs 3115652015 @default.
- W3115652015 citedByCount "37" @default.
- W3115652015 countsByYear W31156520152021 @default.
- W3115652015 countsByYear W31156520152022 @default.
- W3115652015 countsByYear W31156520152023 @default.
- W3115652015 crossrefType "journal-article" @default.
- W3115652015 hasAuthorship W3115652015A5001004351 @default.
- W3115652015 hasAuthorship W3115652015A5009126710 @default.
- W3115652015 hasAuthorship W3115652015A5014125206 @default.
- W3115652015 hasAuthorship W3115652015A5017963617 @default.
- W3115652015 hasAuthorship W3115652015A5072773646 @default.
- W3115652015 hasConcept C105795698 @default.
- W3115652015 hasConcept C107673813 @default.
- W3115652015 hasConcept C11413529 @default.
- W3115652015 hasConcept C114466953 @default.
- W3115652015 hasConcept C116834253 @default.
- W3115652015 hasConcept C119857082 @default.
- W3115652015 hasConcept C124101348 @default.
- W3115652015 hasConcept C126255220 @default.
- W3115652015 hasConcept C127413603 @default.
- W3115652015 hasConcept C138885662 @default.
- W3115652015 hasConcept C154945302 @default.
- W3115652015 hasConcept C157286648 @default.
- W3115652015 hasConcept C163175372 @default.
- W3115652015 hasConcept C182081679 @default.
- W3115652015 hasConcept C199360897 @default.
- W3115652015 hasConcept C2776247918 @default.
- W3115652015 hasConcept C2776330181 @default.
- W3115652015 hasConcept C2776401178 @default.
- W3115652015 hasConcept C33923547 @default.
- W3115652015 hasConcept C41008148 @default.
- W3115652015 hasConcept C41895202 @default.
- W3115652015 hasConcept C49781872 @default.
- W3115652015 hasConcept C59822182 @default.
- W3115652015 hasConcept C66938386 @default.
- W3115652015 hasConcept C739882 @default.
- W3115652015 hasConcept C79337645 @default.
- W3115652015 hasConcept C86803240 @default.
- W3115652015 hasConceptScore W3115652015C105795698 @default.
- W3115652015 hasConceptScore W3115652015C107673813 @default.
- W3115652015 hasConceptScore W3115652015C11413529 @default.
- W3115652015 hasConceptScore W3115652015C114466953 @default.
- W3115652015 hasConceptScore W3115652015C116834253 @default.
- W3115652015 hasConceptScore W3115652015C119857082 @default.