Matches in SemOpenAlex for { <https://semopenalex.org/work/W3115655654> ?p ?o ?g. }
- W3115655654 endingPage "11" @default.
- W3115655654 startingPage "1" @default.
- W3115655654 abstract "The clinical severity, rapid transmission and human losses due to coronavirus disease 2019 (Covid-19) have led the World Health Organization to declare it a pandemic. Traditional epidemiological tools are being significantly complemented by recent innovations especially using artificial intelligence (AI) and machine learning. AI-based model systems could improve pattern recognition of disease spread in populations and predictions of outbreaks in different geographical locations. A variable and a minimal amount of data are available for the signs and symptoms of Covid-19, allowing a composite of maximum likelihood algorithms to be employed to enhance the accuracy of disease diagnosis and to identify potential drugs. AI-based forecasting and predictions are expected to complement traditional approaches by helping public health officials to select better response and preparedness measures against Covid-19 cases. AI-based approaches have helped address the key issues but a significant impact on the global healthcare industry is yet to be achieved. The capability of AI to address the challenges may make it a key player in the operation of healthcare systems in future. Here, we present an overview of the prospective applications of the AI model systems in healthcare settings during the ongoing Covid-19 pandemic." @default.
- W3115655654 created "2021-01-05" @default.
- W3115655654 creator A5002454451 @default.
- W3115655654 creator A5013351961 @default.
- W3115655654 creator A5017680058 @default.
- W3115655654 creator A5021700174 @default.
- W3115655654 creator A5025172190 @default.
- W3115655654 creator A5048647653 @default.
- W3115655654 creator A5052602459 @default.
- W3115655654 creator A5053976146 @default.
- W3115655654 creator A5074165694 @default.
- W3115655654 creator A5077100648 @default.
- W3115655654 creator A5084973502 @default.
- W3115655654 creator A5086078629 @default.
- W3115655654 creator A5089248711 @default.
- W3115655654 date "2020-12-19" @default.
- W3115655654 modified "2023-10-12" @default.
- W3115655654 title "How artificial intelligence may help the Covid‐19 pandemic: Pitfalls and lessons for the future" @default.
- W3115655654 cites W1927002309 @default.
- W3115655654 cites W1993490134 @default.
- W3115655654 cites W2039509869 @default.
- W3115655654 cites W2046727047 @default.
- W3115655654 cites W2085891931 @default.
- W3115655654 cites W2096150188 @default.
- W3115655654 cites W2163087340 @default.
- W3115655654 cites W2180456856 @default.
- W3115655654 cites W2247894828 @default.
- W3115655654 cites W2297600326 @default.
- W3115655654 cites W2339673226 @default.
- W3115655654 cites W2380358550 @default.
- W3115655654 cites W2411662729 @default.
- W3115655654 cites W2477777706 @default.
- W3115655654 cites W2518538438 @default.
- W3115655654 cites W2582336686 @default.
- W3115655654 cites W2607006541 @default.
- W3115655654 cites W2624093302 @default.
- W3115655654 cites W2766013390 @default.
- W3115655654 cites W2799794045 @default.
- W3115655654 cites W2889174941 @default.
- W3115655654 cites W2898735074 @default.
- W3115655654 cites W2920358072 @default.
- W3115655654 cites W2991460415 @default.
- W3115655654 cites W2999044305 @default.
- W3115655654 cites W2999612210 @default.
- W3115655654 cites W3004906315 @default.
- W3115655654 cites W3004919484 @default.
- W3115655654 cites W3006049090 @default.
- W3115655654 cites W3006110666 @default.
- W3115655654 cites W3006642361 @default.
- W3115655654 cites W3006834170 @default.
- W3115655654 cites W3008401431 @default.
- W3115655654 cites W3008582897 @default.
- W3115655654 cites W3010110899 @default.
- W3115655654 cites W3010670817 @default.
- W3115655654 cites W3011716991 @default.
- W3115655654 cites W3012739186 @default.
- W3115655654 cites W3013758358 @default.
- W3115655654 cites W3014675478 @default.
- W3115655654 cites W3016907473 @default.
- W3115655654 cites W3017117984 @default.
- W3115655654 cites W3017185871 @default.
- W3115655654 cites W3017855299 @default.
- W3115655654 cites W3019119825 @default.
- W3115655654 cites W3019170348 @default.
- W3115655654 cites W3022251615 @default.
- W3115655654 cites W3022885394 @default.
- W3115655654 cites W3023006744 @default.
- W3115655654 cites W3025899282 @default.
- W3115655654 cites W3025948831 @default.
- W3115655654 cites W3026350508 @default.
- W3115655654 cites W3026804883 @default.
- W3115655654 cites W3026930841 @default.
- W3115655654 cites W3029166290 @default.
- W3115655654 cites W3029848232 @default.
- W3115655654 cites W3031443331 @default.
- W3115655654 cites W3032004606 @default.
- W3115655654 cites W3032017599 @default.
- W3115655654 cites W3032935427 @default.
- W3115655654 cites W3037105702 @default.
- W3115655654 cites W3037167931 @default.
- W3115655654 cites W3037538421 @default.
- W3115655654 cites W3040508291 @default.
- W3115655654 cites W3087000505 @default.
- W3115655654 cites W3090171308 @default.
- W3115655654 cites W3091978650 @default.
- W3115655654 cites W3096956107 @default.
- W3115655654 cites W3114324465 @default.
- W3115655654 cites W3115655654 @default.
- W3115655654 cites W3188214461 @default.
- W3115655654 cites W4230779446 @default.
- W3115655654 cites W857860336 @default.
- W3115655654 doi "https://doi.org/10.1002/rmv.2205" @default.
- W3115655654 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7883226" @default.
- W3115655654 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33476063" @default.
- W3115655654 hasPublicationYear "2020" @default.
- W3115655654 type Work @default.
- W3115655654 sameAs 3115655654 @default.
- W3115655654 citedByCount "44" @default.