Matches in SemOpenAlex for { <https://semopenalex.org/work/W3115657802> ?p ?o ?g. }
- W3115657802 abstract "Automated input generators are widely used for large-scale dynamic analysis of mobile apps. Such input generators must constantly choose which UI element to interact with and how to interact with it, in order to achieve high coverage with a limited time budget. Currently, most input generators adopt pseudo-random or brute-force searching strategies, which may take very long to find the correct combination of inputs that can drive the app into new and important states. In this paper, we propose Humanoid, a deep learning-based approach to GUI test input generation by learning from human interactions. Our insight is that if we can learn from human-generated interaction traces, it is possible to automatically prioritize test inputs based on their importance as perceived by users. We design and implement a deep neural network model to learn how end-users would interact with an app (specifically, which UI elements to interact with and how). Our experiments showed that the interaction model can successfully prioritize user-preferred inputs for any new UI (with a top-1 accuracy of 51.2% and a top-10 accuracy of 85.2%). We implemented an input generator for Android apps based on the learned model and evaluated it on both open-source apps and market apps. The results indicated that Humanoid was able to achieve higher coverage than six state-of-the-art test generators. However, further analysis showed that the learned model was not the main reason of coverage improvement. Although the learned interaction pattern could drive the app into some important GUI states with higher probabilities, it had limited effect on the width and depth of GUI state search, which is the key to improve test coverage in the long term. Whether and how human interaction patterns can be used to improve coverage is still an unknown and challenging problem." @default.
- W3115657802 created "2021-01-05" @default.
- W3115657802 creator A5014456335 @default.
- W3115657802 creator A5021450973 @default.
- W3115657802 creator A5029661948 @default.
- W3115657802 creator A5034959009 @default.
- W3115657802 date "2019-01-09" @default.
- W3115657802 modified "2023-09-23" @default.
- W3115657802 title "Humanoid: A Deep Learning-based Approach to Automated Black-box Android App Testing" @default.
- W3115657802 cites W1699449651 @default.
- W3115657802 cites W1903029394 @default.
- W3115657802 cites W1947481528 @default.
- W3115657802 cites W1963971515 @default.
- W3115657802 cites W1982773740 @default.
- W3115657802 cites W2007644286 @default.
- W3115657802 cites W2013856010 @default.
- W3115657802 cites W2023480702 @default.
- W3115657802 cites W2032724464 @default.
- W3115657802 cites W2043828712 @default.
- W3115657802 cites W2088749975 @default.
- W3115657802 cites W2091932246 @default.
- W3115657802 cites W2101800210 @default.
- W3115657802 cites W2130942839 @default.
- W3115657802 cites W2136391815 @default.
- W3115657802 cites W2161963160 @default.
- W3115657802 cites W2163605009 @default.
- W3115657802 cites W2164170598 @default.
- W3115657802 cites W2194775991 @default.
- W3115657802 cites W2227887088 @default.
- W3115657802 cites W2242463216 @default.
- W3115657802 cites W2249220572 @default.
- W3115657802 cites W2402144811 @default.
- W3115657802 cites W2463553622 @default.
- W3115657802 cites W2478219091 @default.
- W3115657802 cites W2512627987 @default.
- W3115657802 cites W2514303331 @default.
- W3115657802 cites W2533771361 @default.
- W3115657802 cites W2533895917 @default.
- W3115657802 cites W2571682498 @default.
- W3115657802 cites W2619271281 @default.
- W3115657802 cites W2740742367 @default.
- W3115657802 cites W2765874585 @default.
- W3115657802 cites W2767785010 @default.
- W3115657802 cites W2794908093 @default.
- W3115657802 cites W2808617203 @default.
- W3115657802 cites W2884875870 @default.
- W3115657802 cites W2888272748 @default.
- W3115657802 doi "https://doi.org/10.48550/arxiv.1901.02633" @default.
- W3115657802 hasPublicationYear "2019" @default.
- W3115657802 type Work @default.
- W3115657802 sameAs 3115657802 @default.
- W3115657802 citedByCount "0" @default.
- W3115657802 crossrefType "posted-content" @default.
- W3115657802 hasAuthorship W3115657802A5014456335 @default.
- W3115657802 hasAuthorship W3115657802A5021450973 @default.
- W3115657802 hasAuthorship W3115657802A5029661948 @default.
- W3115657802 hasAuthorship W3115657802A5034959009 @default.
- W3115657802 hasBestOaLocation W31156578021 @default.
- W3115657802 hasConcept C107457646 @default.
- W3115657802 hasConcept C108583219 @default.
- W3115657802 hasConcept C111919701 @default.
- W3115657802 hasConcept C119857082 @default.
- W3115657802 hasConcept C121332964 @default.
- W3115657802 hasConcept C136764020 @default.
- W3115657802 hasConcept C154945302 @default.
- W3115657802 hasConcept C163258240 @default.
- W3115657802 hasConcept C2780992000 @default.
- W3115657802 hasConcept C2988045736 @default.
- W3115657802 hasConcept C2988145974 @default.
- W3115657802 hasConcept C41008148 @default.
- W3115657802 hasConcept C557433098 @default.
- W3115657802 hasConcept C60692881 @default.
- W3115657802 hasConcept C62520636 @default.
- W3115657802 hasConcept C90509273 @default.
- W3115657802 hasConcept C94966114 @default.
- W3115657802 hasConceptScore W3115657802C107457646 @default.
- W3115657802 hasConceptScore W3115657802C108583219 @default.
- W3115657802 hasConceptScore W3115657802C111919701 @default.
- W3115657802 hasConceptScore W3115657802C119857082 @default.
- W3115657802 hasConceptScore W3115657802C121332964 @default.
- W3115657802 hasConceptScore W3115657802C136764020 @default.
- W3115657802 hasConceptScore W3115657802C154945302 @default.
- W3115657802 hasConceptScore W3115657802C163258240 @default.
- W3115657802 hasConceptScore W3115657802C2780992000 @default.
- W3115657802 hasConceptScore W3115657802C2988045736 @default.
- W3115657802 hasConceptScore W3115657802C2988145974 @default.
- W3115657802 hasConceptScore W3115657802C41008148 @default.
- W3115657802 hasConceptScore W3115657802C557433098 @default.
- W3115657802 hasConceptScore W3115657802C60692881 @default.
- W3115657802 hasConceptScore W3115657802C62520636 @default.
- W3115657802 hasConceptScore W3115657802C90509273 @default.
- W3115657802 hasConceptScore W3115657802C94966114 @default.
- W3115657802 hasLocation W31156578021 @default.
- W3115657802 hasOpenAccess W3115657802 @default.
- W3115657802 hasPrimaryLocation W31156578021 @default.
- W3115657802 hasRelatedWork W2999907851 @default.
- W3115657802 hasRelatedWork W3037743169 @default.
- W3115657802 hasRelatedWork W3115657802 @default.
- W3115657802 hasRelatedWork W3173182854 @default.
- W3115657802 hasRelatedWork W3180713997 @default.