Matches in SemOpenAlex for { <https://semopenalex.org/work/W3115657825> ?p ?o ?g. }
- W3115657825 endingPage "247201" @default.
- W3115657825 startingPage "247201" @default.
- W3115657825 abstract "In this paper, the voltage induced metal-insulator phase transition (MIT) of polyethene glycol (PEG) composite film is investigated based on VO<sub>2</sub> nanoparticles prepared by the hydrothermal method and vacuum annealing process. High purity VO<sub>2</sub> (B) nanoparticles are obtained after being treated in a hydrothermal reactor at 180 ℃ for 12 h by using vanadium pentoxide (V<sub>2</sub>O<sub>5</sub>) and oxalic acid (H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>·2H<sub>2</sub>O) as raw materials. The X-ray diffraction (XRD) pattern shows that the prepared nano-powders are free of impurities, and the scanning electron microscope (SEM) pictures confirm that the micro-morphology is of a band-shaped nano-structure. Next, these products are heated in a vacuum quartz tube at 500 ℃ for different times. The XRD and differential scanning calorimeter (DSC) curves of the annealed samples prove that the VO<sub>2</sub> (M) with MIT performance is successfully prepared. And the content of M phase in the sample increases with preparation time increasing. When the annealing time is longer than 60 min, all the samples are converted into materials with M phase. The SEM images show that the average length of the nano-powders decreases with the annealing time increasing from 10 min to 300 min. Then PEG coating containing VO<sub>2</sub> (M) nanoparticles is applied between two electrodes with a pitch of 1 mm on printed circuit board (PCB). The <i>V</i>-<i>I</i> test is carried out after a 20 kΩ resistor has been connected in the circuit. The results display repeatable non-linear <i>V</i>-<i>I</i> curves indicating that the composite film undergoes an MIT phase transition under voltage. After it is activated for the first test, the MIT voltage and non-linear coefficient increase exponentially as the length of VO<sub>2</sub> decreases. Besides, it is also found that the voltage across the material is maintained at around 10 V after the resistance has changed suddenly, which is similar to the behavior of diode clamping voltage. We believe that the phase transition voltage and non-linear coefficient of the VO<sub>2</sub> composite film are influenced by the intra-particle potential barrier and the inter-layer potential barrier. The longer the average length of the nanoparticles, the higher the potential barrier between the interfaces in the conductive channels is, and thus increasing the phase transition voltage and phase transition coefficient. The activation phenomenon of the thin film is caused by reducing the barrier between particles during the first test. Furthermore, the results can prove that the electric field is the determinant of the phase transition during the VO<sub>2</sub> composite film electrical field induced MIT of the VO<sub>2</sub> composite film. However, after the phase transition, Joule heat plays a significant role in maintaining the low resistance state." @default.
- W3115657825 created "2021-01-05" @default.
- W3115657825 creator A5011274563 @default.
- W3115657825 creator A5019102911 @default.
- W3115657825 creator A5056598178 @default.
- W3115657825 creator A5080663972 @default.
- W3115657825 date "2020-01-01" @default.
- W3115657825 modified "2023-10-02" @default.
- W3115657825 title "Voltage induced phase transition of polyethene glycol composite film filled with VO<sub>2</sub> nanoparticles" @default.
- W3115657825 cites W1529999871 @default.
- W3115657825 cites W1571970295 @default.
- W3115657825 cites W1965500062 @default.
- W3115657825 cites W1967150396 @default.
- W3115657825 cites W1973315818 @default.
- W3115657825 cites W1981703055 @default.
- W3115657825 cites W1999147318 @default.
- W3115657825 cites W2012765701 @default.
- W3115657825 cites W2013642972 @default.
- W3115657825 cites W2023737763 @default.
- W3115657825 cites W2028508118 @default.
- W3115657825 cites W2037595295 @default.
- W3115657825 cites W2038323736 @default.
- W3115657825 cites W2043774348 @default.
- W3115657825 cites W2047802539 @default.
- W3115657825 cites W2049047691 @default.
- W3115657825 cites W2059518763 @default.
- W3115657825 cites W2065720535 @default.
- W3115657825 cites W2076505824 @default.
- W3115657825 cites W2076562496 @default.
- W3115657825 cites W2084388113 @default.
- W3115657825 cites W2089444055 @default.
- W3115657825 cites W2092631893 @default.
- W3115657825 cites W2114319806 @default.
- W3115657825 cites W2126176903 @default.
- W3115657825 cites W2171443155 @default.
- W3115657825 cites W2171602412 @default.
- W3115657825 cites W2332331335 @default.
- W3115657825 cites W2412872650 @default.
- W3115657825 cites W2476700338 @default.
- W3115657825 cites W2487074748 @default.
- W3115657825 cites W2560065553 @default.
- W3115657825 cites W2901451754 @default.
- W3115657825 cites W2950387939 @default.
- W3115657825 cites W2986441620 @default.
- W3115657825 cites W2997546818 @default.
- W3115657825 cites W3112799141 @default.
- W3115657825 cites W3114820501 @default.
- W3115657825 cites W3118104571 @default.
- W3115657825 cites W2044428646 @default.
- W3115657825 doi "https://doi.org/10.7498/aps.69.20200834" @default.
- W3115657825 hasPublicationYear "2020" @default.
- W3115657825 type Work @default.
- W3115657825 sameAs 3115657825 @default.
- W3115657825 citedByCount "4" @default.
- W3115657825 countsByYear W31156578252021 @default.
- W3115657825 countsByYear W31156578252023 @default.
- W3115657825 crossrefType "journal-article" @default.
- W3115657825 hasAuthorship W3115657825A5011274563 @default.
- W3115657825 hasAuthorship W3115657825A5019102911 @default.
- W3115657825 hasAuthorship W3115657825A5056598178 @default.
- W3115657825 hasAuthorship W3115657825A5080663972 @default.
- W3115657825 hasBestOaLocation W31156578251 @default.
- W3115657825 hasConcept C113196181 @default.
- W3115657825 hasConcept C121332964 @default.
- W3115657825 hasConcept C127413603 @default.
- W3115657825 hasConcept C13965031 @default.
- W3115657825 hasConcept C155672457 @default.
- W3115657825 hasConcept C156622251 @default.
- W3115657825 hasConcept C159985019 @default.
- W3115657825 hasConcept C171250308 @default.
- W3115657825 hasConcept C185592680 @default.
- W3115657825 hasConcept C192562407 @default.
- W3115657825 hasConcept C26771246 @default.
- W3115657825 hasConcept C2776871784 @default.
- W3115657825 hasConcept C2777855556 @default.
- W3115657825 hasConcept C39519442 @default.
- W3115657825 hasConcept C42360764 @default.
- W3115657825 hasConcept C43617362 @default.
- W3115657825 hasConcept C56052488 @default.
- W3115657825 hasConcept C8010536 @default.
- W3115657825 hasConcept C97355855 @default.
- W3115657825 hasConceptScore W3115657825C113196181 @default.
- W3115657825 hasConceptScore W3115657825C121332964 @default.
- W3115657825 hasConceptScore W3115657825C127413603 @default.
- W3115657825 hasConceptScore W3115657825C13965031 @default.
- W3115657825 hasConceptScore W3115657825C155672457 @default.
- W3115657825 hasConceptScore W3115657825C156622251 @default.
- W3115657825 hasConceptScore W3115657825C159985019 @default.
- W3115657825 hasConceptScore W3115657825C171250308 @default.
- W3115657825 hasConceptScore W3115657825C185592680 @default.
- W3115657825 hasConceptScore W3115657825C192562407 @default.
- W3115657825 hasConceptScore W3115657825C26771246 @default.
- W3115657825 hasConceptScore W3115657825C2776871784 @default.
- W3115657825 hasConceptScore W3115657825C2777855556 @default.
- W3115657825 hasConceptScore W3115657825C39519442 @default.
- W3115657825 hasConceptScore W3115657825C42360764 @default.
- W3115657825 hasConceptScore W3115657825C43617362 @default.
- W3115657825 hasConceptScore W3115657825C56052488 @default.