Matches in SemOpenAlex for { <https://semopenalex.org/work/W3115754930> ?p ?o ?g. }
- W3115754930 endingPage "15" @default.
- W3115754930 startingPage "1" @default.
- W3115754930 abstract "The prediction of construction cost of metro shield engineering is of great significance to project management. In this study, we used the rough set theory, a backpropagation (BP) neural network, and quantum particle swarm optimization (QPSO) to establish a prediction model for predicting the metro shield construction costs. The model accounts for the complexity of metro shield construction and the nonlinear relationship between the construction cost factors. First, the factors affecting the construction cost were determined by referring to the Chinese National Standards and analysing the engineering practice of typical metro shield projects. The rough set theory was used to simplify the system of influencing factors to extract the dominant influencing factors and reduce the number of input variables in the BP neural network. Since the BP neural network easily falls into a local minimum and has a slow convergence speed, QPSO was used to optimize the weights and thresholds of the BP neural network. This method combined the strong nonlinear analysis capabilities of the BP and the global search capabilities of the QPSO. Finally, we selected 50 projects in China for a case analysis. The results showed the dominant factors affecting the construction cost of these projects included ten indicators, such as the type of tunnelling machine and the geological characteristics. The determination coefficient, mean absolute percentage error, root mean square error, and mean absolute error, which are frequently used error analysis tools, were used to analyse the calculation errors of different models (the proposed model, a multiple regression method, a traditional BP model, a BP model optimized by the genetic algorithm, and the BP model optimized by the particle swarm optimization). The results showed that the proposed method had the highest prediction accuracy and stability, demonstrating the effectiveness and excellent performance of this proposed method." @default.
- W3115754930 created "2021-01-05" @default.
- W3115754930 creator A5021984184 @default.
- W3115754930 creator A5031278253 @default.
- W3115754930 creator A5034427469 @default.
- W3115754930 creator A5063151204 @default.
- W3115754930 date "2020-12-18" @default.
- W3115754930 modified "2023-09-23" @default.
- W3115754930 title "The Prediction of Metro Shield Construction Cost Based on a Backpropagation Neural Network Improved by Quantum Particle Swarm Optimization" @default.
- W3115754930 cites W1545960569 @default.
- W3115754930 cites W194202718 @default.
- W3115754930 cites W1969693026 @default.
- W3115754930 cites W1981766191 @default.
- W3115754930 cites W1990272564 @default.
- W3115754930 cites W1998647671 @default.
- W3115754930 cites W2020820532 @default.
- W3115754930 cites W2022506294 @default.
- W3115754930 cites W2035828137 @default.
- W3115754930 cites W2036681246 @default.
- W3115754930 cites W2042044597 @default.
- W3115754930 cites W2045045282 @default.
- W3115754930 cites W2067878879 @default.
- W3115754930 cites W2074418717 @default.
- W3115754930 cites W2074603683 @default.
- W3115754930 cites W2079454091 @default.
- W3115754930 cites W2104757522 @default.
- W3115754930 cites W2143451122 @default.
- W3115754930 cites W2158463342 @default.
- W3115754930 cites W2379367145 @default.
- W3115754930 cites W2468698969 @default.
- W3115754930 cites W2507510427 @default.
- W3115754930 cites W2550430177 @default.
- W3115754930 cites W2590646629 @default.
- W3115754930 cites W2755869257 @default.
- W3115754930 cites W2773642337 @default.
- W3115754930 cites W2829536470 @default.
- W3115754930 cites W2890691512 @default.
- W3115754930 cites W2891098782 @default.
- W3115754930 cites W2897859322 @default.
- W3115754930 cites W2952634700 @default.
- W3115754930 cites W2985918822 @default.
- W3115754930 cites W2995016768 @default.
- W3115754930 cites W3095132059 @default.
- W3115754930 cites W4232865390 @default.
- W3115754930 doi "https://doi.org/10.1155/2020/6692130" @default.
- W3115754930 hasPublicationYear "2020" @default.
- W3115754930 type Work @default.
- W3115754930 sameAs 3115754930 @default.
- W3115754930 citedByCount "3" @default.
- W3115754930 countsByYear W31157549302021 @default.
- W3115754930 countsByYear W31157549302022 @default.
- W3115754930 crossrefType "journal-article" @default.
- W3115754930 hasAuthorship W3115754930A5021984184 @default.
- W3115754930 hasAuthorship W3115754930A5031278253 @default.
- W3115754930 hasAuthorship W3115754930A5034427469 @default.
- W3115754930 hasAuthorship W3115754930A5063151204 @default.
- W3115754930 hasBestOaLocation W31157549301 @default.
- W3115754930 hasConcept C105795698 @default.
- W3115754930 hasConcept C11413529 @default.
- W3115754930 hasConcept C119857082 @default.
- W3115754930 hasConcept C121332964 @default.
- W3115754930 hasConcept C124101348 @default.
- W3115754930 hasConcept C126255220 @default.
- W3115754930 hasConcept C127413603 @default.
- W3115754930 hasConcept C139945424 @default.
- W3115754930 hasConcept C154945302 @default.
- W3115754930 hasConcept C155032097 @default.
- W3115754930 hasConcept C158622935 @default.
- W3115754930 hasConcept C162324750 @default.
- W3115754930 hasConcept C177264268 @default.
- W3115754930 hasConcept C199360897 @default.
- W3115754930 hasConcept C2777303404 @default.
- W3115754930 hasConcept C33923547 @default.
- W3115754930 hasConcept C41008148 @default.
- W3115754930 hasConcept C48921125 @default.
- W3115754930 hasConcept C50522688 @default.
- W3115754930 hasConcept C50644808 @default.
- W3115754930 hasConcept C62520636 @default.
- W3115754930 hasConcept C85617194 @default.
- W3115754930 hasConceptScore W3115754930C105795698 @default.
- W3115754930 hasConceptScore W3115754930C11413529 @default.
- W3115754930 hasConceptScore W3115754930C119857082 @default.
- W3115754930 hasConceptScore W3115754930C121332964 @default.
- W3115754930 hasConceptScore W3115754930C124101348 @default.
- W3115754930 hasConceptScore W3115754930C126255220 @default.
- W3115754930 hasConceptScore W3115754930C127413603 @default.
- W3115754930 hasConceptScore W3115754930C139945424 @default.
- W3115754930 hasConceptScore W3115754930C154945302 @default.
- W3115754930 hasConceptScore W3115754930C155032097 @default.
- W3115754930 hasConceptScore W3115754930C158622935 @default.
- W3115754930 hasConceptScore W3115754930C162324750 @default.
- W3115754930 hasConceptScore W3115754930C177264268 @default.
- W3115754930 hasConceptScore W3115754930C199360897 @default.
- W3115754930 hasConceptScore W3115754930C2777303404 @default.
- W3115754930 hasConceptScore W3115754930C33923547 @default.
- W3115754930 hasConceptScore W3115754930C41008148 @default.
- W3115754930 hasConceptScore W3115754930C48921125 @default.
- W3115754930 hasConceptScore W3115754930C50522688 @default.