Matches in SemOpenAlex for { <https://semopenalex.org/work/W3115845394> ?p ?o ?g. }
- W3115845394 abstract "Abstract Fluorescence microscopy is an essential tool in cell biology to visualise the spatial distribution of proteins that dictates their role in cellular homeostasis, dynamic cellular processes, and dysfunction during disease. However, unspecific binding of the antibodies that are used to label a cellular target often leads to high background signals in the images, decreasing the contrast of a cellular structure of interest. Recently, convolutional neural networks (CNNs) have been successfully employed for denoising and upsampling in fluorescence microscopy, but current image restoration methods cannot correct for background signals originating from the label. Here, we report a new method to train a CNN as content filter for non-specific signals in fluorescence images that does not require a clean benchmark, using dual-labelling to generate the training data. We name this method label2label (L2L). In L2L, a CNN is trained with image pairs of two non-identical labels that target the same cellular structure of interest. We show that after L2L training a network restores images not only with reduced image noise but also label-induced unspecific fluorescence signal in images of a variety of cellular structures, resulting in images with enhanced structural contrast. By implementing a multi-scale structural similarity loss function, the performance of the CNN as a content filter is further enhanced, for example, in STED images of caveolae. We show evidence that, for this loss function, sample differences in the training data significantly decrease so-called hallucination effects in the restorations that we otherwise observe when training the CNN with images of the same label. We also assess the performance of a cycle generative adversarial network as a content filter after L2L training with unpaired image data. Lastly, we show that a CNN can be trained to separate structures in superposed fluorescence images of two different cellular targets, allowing multiplex imaging with microscopy setups where the number of excitation sources or detectors is limited." @default.
- W3115845394 created "2021-01-05" @default.
- W3115845394 creator A5043238908 @default.
- W3115845394 creator A5064215722 @default.
- W3115845394 creator A5067535356 @default.
- W3115845394 creator A5075113867 @default.
- W3115845394 creator A5085864545 @default.
- W3115845394 date "2020-12-22" @default.
- W3115845394 modified "2023-09-23" @default.
- W3115845394 title "Label2label: Training a neural network to selectively restore cellular structures in fluorescence microscopy" @default.
- W3115845394 cites W1580389772 @default.
- W3115845394 cites W1601131608 @default.
- W3115845394 cites W1901129140 @default.
- W3115845394 cites W1969103349 @default.
- W3115845394 cites W2016330743 @default.
- W3115845394 cites W2016984872 @default.
- W3115845394 cites W2047368492 @default.
- W3115845394 cites W2099471712 @default.
- W3115845394 cites W2104001125 @default.
- W3115845394 cites W2105615050 @default.
- W3115845394 cites W2106521963 @default.
- W3115845394 cites W2122743532 @default.
- W3115845394 cites W2133665775 @default.
- W3115845394 cites W2171122741 @default.
- W3115845394 cites W2520224443 @default.
- W3115845394 cites W2562637781 @default.
- W3115845394 cites W2775774022 @default.
- W3115845394 cites W2795091386 @default.
- W3115845394 cites W2797749376 @default.
- W3115845394 cites W2820932019 @default.
- W3115845394 cites W2900936384 @default.
- W3115845394 cites W2902857081 @default.
- W3115845394 cites W2903993654 @default.
- W3115845394 cites W2904591139 @default.
- W3115845394 cites W2910683834 @default.
- W3115845394 cites W2922810551 @default.
- W3115845394 cites W2949493305 @default.
- W3115845394 cites W2950501364 @default.
- W3115845394 cites W2961912654 @default.
- W3115845394 cites W2962793481 @default.
- W3115845394 cites W2994568919 @default.
- W3115845394 cites W3016006586 @default.
- W3115845394 cites W3041047530 @default.
- W3115845394 cites W3156859314 @default.
- W3115845394 cites W4321466059 @default.
- W3115845394 cites W4361772798 @default.
- W3115845394 doi "https://doi.org/10.1101/2020.12.21.423789" @default.
- W3115845394 hasPublicationYear "2020" @default.
- W3115845394 type Work @default.
- W3115845394 sameAs 3115845394 @default.
- W3115845394 citedByCount "1" @default.
- W3115845394 countsByYear W31158453942021 @default.
- W3115845394 crossrefType "posted-content" @default.
- W3115845394 hasAuthorship W3115845394A5043238908 @default.
- W3115845394 hasAuthorship W3115845394A5064215722 @default.
- W3115845394 hasAuthorship W3115845394A5067535356 @default.
- W3115845394 hasAuthorship W3115845394A5075113867 @default.
- W3115845394 hasAuthorship W3115845394A5085864545 @default.
- W3115845394 hasBestOaLocation W31158453941 @default.
- W3115845394 hasConcept C110384440 @default.
- W3115845394 hasConcept C115961682 @default.
- W3115845394 hasConcept C120665830 @default.
- W3115845394 hasConcept C121332964 @default.
- W3115845394 hasConcept C13280743 @default.
- W3115845394 hasConcept C147080431 @default.
- W3115845394 hasConcept C153180895 @default.
- W3115845394 hasConcept C154945302 @default.
- W3115845394 hasConcept C169274487 @default.
- W3115845394 hasConcept C185798385 @default.
- W3115845394 hasConcept C186060115 @default.
- W3115845394 hasConcept C205649164 @default.
- W3115845394 hasConcept C2776502983 @default.
- W3115845394 hasConcept C31972630 @default.
- W3115845394 hasConcept C41008148 @default.
- W3115845394 hasConcept C81363708 @default.
- W3115845394 hasConcept C86803240 @default.
- W3115845394 hasConcept C91881484 @default.
- W3115845394 hasConceptScore W3115845394C110384440 @default.
- W3115845394 hasConceptScore W3115845394C115961682 @default.
- W3115845394 hasConceptScore W3115845394C120665830 @default.
- W3115845394 hasConceptScore W3115845394C121332964 @default.
- W3115845394 hasConceptScore W3115845394C13280743 @default.
- W3115845394 hasConceptScore W3115845394C147080431 @default.
- W3115845394 hasConceptScore W3115845394C153180895 @default.
- W3115845394 hasConceptScore W3115845394C154945302 @default.
- W3115845394 hasConceptScore W3115845394C169274487 @default.
- W3115845394 hasConceptScore W3115845394C185798385 @default.
- W3115845394 hasConceptScore W3115845394C186060115 @default.
- W3115845394 hasConceptScore W3115845394C205649164 @default.
- W3115845394 hasConceptScore W3115845394C2776502983 @default.
- W3115845394 hasConceptScore W3115845394C31972630 @default.
- W3115845394 hasConceptScore W3115845394C41008148 @default.
- W3115845394 hasConceptScore W3115845394C81363708 @default.
- W3115845394 hasConceptScore W3115845394C86803240 @default.
- W3115845394 hasConceptScore W3115845394C91881484 @default.
- W3115845394 hasLocation W31158453941 @default.
- W3115845394 hasLocation W31158453942 @default.
- W3115845394 hasLocation W31158453943 @default.
- W3115845394 hasLocation W31158453944 @default.
- W3115845394 hasLocation W31158453945 @default.