Matches in SemOpenAlex for { <https://semopenalex.org/work/W3115927889> ?p ?o ?g. }
- W3115927889 abstract "Abstract The difficulty of estimating joint kinematics remains a critical barrier toward widespread use of inertial measurement units in biomechanics. Traditional sensor-fusion filters are largely reliant on magnetometer readings, which may be disturbed in uncontrolled environments. Careful sensor-to-segment alignment and calibration strategies are also necessary, which may burden users and lead to further error in uncontrolled settings. We introduce a new framework that combines deep learning and top-down optimization to accurately predict lower extremity joint angles directly from inertial data, without relying on magnetometer readings. We trained deep neural networks on a large set of synthetic inertial data derived from a clinical marker-based motion-tracking database of hundreds of subjects. We used data augmentation techniques and an automated calibration approach to reduce error due to variability in sensor placement and limb alignment. On left-out subjects, lower extremity kinematics could be predicted with a mean ( ± STD) root mean squared error of less than 1 . 27 ° ( ± 0 . 38 ° ) in flexion/extension, less than 2 . 52 ° ( ± 0 . 98 °) in ad/abduction, and less than 3 . 34 ° ( ± 1 . 02 ° ) internal/external rotation, across walking and running trials. Errors decreased exponentially with the amount of training data, confirming the need for large datasets when training deep neural networks. While this framework remains to be validated with true inertial measurement unit (IMU) data, the results presented here are a promising advance toward convenient estimation of gait kinematics in natural environments. Progress in this direction could enable large-scale studies and offer an unprecedented view into disease progression, patient recovery, and sports biomechanics ." @default.
- W3115927889 created "2021-01-05" @default.
- W3115927889 creator A5008670454 @default.
- W3115927889 creator A5045864780 @default.
- W3115927889 creator A5049063796 @default.
- W3115927889 creator A5055281826 @default.
- W3115927889 creator A5067272320 @default.
- W3115927889 date "2020-12-30" @default.
- W3115927889 modified "2023-09-26" @default.
- W3115927889 title "Estimation of Kinematics from Inertial Measurement Units Using a Combined Deep Learning and Optimization Framework" @default.
- W3115927889 cites W1782270568 @default.
- W3115927889 cites W1988110563 @default.
- W3115927889 cites W1993123013 @default.
- W3115927889 cites W2002204150 @default.
- W3115927889 cites W2037819518 @default.
- W3115927889 cites W2049932614 @default.
- W3115927889 cites W2050112413 @default.
- W3115927889 cites W2053146652 @default.
- W3115927889 cites W2073576021 @default.
- W3115927889 cites W2078936766 @default.
- W3115927889 cites W2079613247 @default.
- W3115927889 cites W2101901432 @default.
- W3115927889 cites W2114721754 @default.
- W3115927889 cites W2120920211 @default.
- W3115927889 cites W2127095067 @default.
- W3115927889 cites W2128885783 @default.
- W3115927889 cites W2131368080 @default.
- W3115927889 cites W2141318231 @default.
- W3115927889 cites W2460830751 @default.
- W3115927889 cites W2540116223 @default.
- W3115927889 cites W2548954486 @default.
- W3115927889 cites W2591682286 @default.
- W3115927889 cites W2736217281 @default.
- W3115927889 cites W2891489434 @default.
- W3115927889 cites W2895748257 @default.
- W3115927889 cites W2954996726 @default.
- W3115927889 cites W2964508341 @default.
- W3115927889 cites W2997769356 @default.
- W3115927889 cites W3003576509 @default.
- W3115927889 cites W3038699862 @default.
- W3115927889 doi "https://doi.org/10.1101/2020.12.29.424030" @default.
- W3115927889 hasPublicationYear "2020" @default.
- W3115927889 type Work @default.
- W3115927889 sameAs 3115927889 @default.
- W3115927889 citedByCount "0" @default.
- W3115927889 crossrefType "posted-content" @default.
- W3115927889 hasAuthorship W3115927889A5008670454 @default.
- W3115927889 hasAuthorship W3115927889A5045864780 @default.
- W3115927889 hasAuthorship W3115927889A5049063796 @default.
- W3115927889 hasAuthorship W3115927889A5055281826 @default.
- W3115927889 hasAuthorship W3115927889A5067272320 @default.
- W3115927889 hasBestOaLocation W31159278891 @default.
- W3115927889 hasConcept C105795698 @default.
- W3115927889 hasConcept C108583219 @default.
- W3115927889 hasConcept C111919701 @default.
- W3115927889 hasConcept C121332964 @default.
- W3115927889 hasConcept C139945424 @default.
- W3115927889 hasConcept C151233233 @default.
- W3115927889 hasConcept C151800584 @default.
- W3115927889 hasConcept C154945302 @default.
- W3115927889 hasConcept C165838908 @default.
- W3115927889 hasConcept C31972630 @default.
- W3115927889 hasConcept C33923547 @default.
- W3115927889 hasConcept C33954974 @default.
- W3115927889 hasConcept C39920418 @default.
- W3115927889 hasConcept C41008148 @default.
- W3115927889 hasConcept C44154836 @default.
- W3115927889 hasConcept C62520636 @default.
- W3115927889 hasConcept C71924100 @default.
- W3115927889 hasConcept C74650414 @default.
- W3115927889 hasConcept C79061980 @default.
- W3115927889 hasConcept C89805583 @default.
- W3115927889 hasConcept C99508421 @default.
- W3115927889 hasConceptScore W3115927889C105795698 @default.
- W3115927889 hasConceptScore W3115927889C108583219 @default.
- W3115927889 hasConceptScore W3115927889C111919701 @default.
- W3115927889 hasConceptScore W3115927889C121332964 @default.
- W3115927889 hasConceptScore W3115927889C139945424 @default.
- W3115927889 hasConceptScore W3115927889C151233233 @default.
- W3115927889 hasConceptScore W3115927889C151800584 @default.
- W3115927889 hasConceptScore W3115927889C154945302 @default.
- W3115927889 hasConceptScore W3115927889C165838908 @default.
- W3115927889 hasConceptScore W3115927889C31972630 @default.
- W3115927889 hasConceptScore W3115927889C33923547 @default.
- W3115927889 hasConceptScore W3115927889C33954974 @default.
- W3115927889 hasConceptScore W3115927889C39920418 @default.
- W3115927889 hasConceptScore W3115927889C41008148 @default.
- W3115927889 hasConceptScore W3115927889C44154836 @default.
- W3115927889 hasConceptScore W3115927889C62520636 @default.
- W3115927889 hasConceptScore W3115927889C71924100 @default.
- W3115927889 hasConceptScore W3115927889C74650414 @default.
- W3115927889 hasConceptScore W3115927889C79061980 @default.
- W3115927889 hasConceptScore W3115927889C89805583 @default.
- W3115927889 hasConceptScore W3115927889C99508421 @default.
- W3115927889 hasLocation W31159278891 @default.
- W3115927889 hasOpenAccess W3115927889 @default.
- W3115927889 hasPrimaryLocation W31159278891 @default.
- W3115927889 hasRelatedWork W2041767515 @default.
- W3115927889 hasRelatedWork W2077888313 @default.
- W3115927889 hasRelatedWork W2383010552 @default.