Matches in SemOpenAlex for { <https://semopenalex.org/work/W3116013614> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3116013614 abstract "Accurate dose prediction has been proved to be able to improve radiotherapy planning efficiency. Recently, deep neural networks have been used in this area and made some progress. However, existing deep-learning-based methods could not predict dose distribution accurately for tumors at various locations, i.e. lung cancer. This article proposes a new deep neural network CAD-UNet that combines 3D U-net, dense connection, and SE-net architecture. Spatial distance information is used as a special input channel in addition to contour information. Dice similarity coefficients of planning target volume (PTV) region was added to the mean squared error (MSE) loss function. A cohort of 192 VMAT plans for lung cancer patients was selected for this study. The trained CAD-UNet and HD-UNet were tested on the test cases. The dose parameters derived form predicted dose distribution were used to generate new plans in the treatment planning system (TPS). The results showed that CAD-UNet can successfully predict dose distribution of lung cancer cases in VMAT, outperforming HD-UNet in PTV region homogeneity. Regenerated plans based on predicted dose showed improvements in DVHs of organs-at-risk (OAR). Those improvements showed that CAD-UNet has the potential to guide dosimetrist in the radiotherapy planning stage." @default.
- W3116013614 created "2021-01-05" @default.
- W3116013614 creator A5008964504 @default.
- W3116013614 creator A5021200664 @default.
- W3116013614 creator A5046874449 @default.
- W3116013614 creator A5049253610 @default.
- W3116013614 creator A5072548035 @default.
- W3116013614 date "2020-11-01" @default.
- W3116013614 modified "2023-09-25" @default.
- W3116013614 title "A Feasibility Study for Predicting 3D Radiotherapy Dose Distribution of Lung VMAT Patients" @default.
- W3116013614 cites W1677182931 @default.
- W3116013614 cites W1880492488 @default.
- W3116013614 cites W1970625453 @default.
- W3116013614 cites W2064322232 @default.
- W3116013614 cites W2084851290 @default.
- W3116013614 cites W2089547408 @default.
- W3116013614 cites W2569993773 @default.
- W3116013614 cites W2752782242 @default.
- W3116013614 cites W2889646458 @default.
- W3116013614 cites W2945203668 @default.
- W3116013614 cites W3026792403 @default.
- W3116013614 cites W3105594088 @default.
- W3116013614 doi "https://doi.org/10.1109/ictai50040.2020.00197" @default.
- W3116013614 hasPublicationYear "2020" @default.
- W3116013614 type Work @default.
- W3116013614 sameAs 3116013614 @default.
- W3116013614 citedByCount "1" @default.
- W3116013614 countsByYear W31160136142023 @default.
- W3116013614 crossrefType "proceedings-article" @default.
- W3116013614 hasAuthorship W3116013614A5008964504 @default.
- W3116013614 hasAuthorship W3116013614A5021200664 @default.
- W3116013614 hasAuthorship W3116013614A5046874449 @default.
- W3116013614 hasAuthorship W3116013614A5049253610 @default.
- W3116013614 hasAuthorship W3116013614A5072548035 @default.
- W3116013614 hasConcept C105795698 @default.
- W3116013614 hasConcept C126838900 @default.
- W3116013614 hasConcept C127413603 @default.
- W3116013614 hasConcept C143998085 @default.
- W3116013614 hasConcept C154945302 @default.
- W3116013614 hasConcept C194789388 @default.
- W3116013614 hasConcept C199639397 @default.
- W3116013614 hasConcept C201645570 @default.
- W3116013614 hasConcept C22029948 @default.
- W3116013614 hasConcept C2776256026 @default.
- W3116013614 hasConcept C2989005 @default.
- W3116013614 hasConcept C33923547 @default.
- W3116013614 hasConcept C41008148 @default.
- W3116013614 hasConcept C50644808 @default.
- W3116013614 hasConcept C509974204 @default.
- W3116013614 hasConcept C71924100 @default.
- W3116013614 hasConcept C75088862 @default.
- W3116013614 hasConceptScore W3116013614C105795698 @default.
- W3116013614 hasConceptScore W3116013614C126838900 @default.
- W3116013614 hasConceptScore W3116013614C127413603 @default.
- W3116013614 hasConceptScore W3116013614C143998085 @default.
- W3116013614 hasConceptScore W3116013614C154945302 @default.
- W3116013614 hasConceptScore W3116013614C194789388 @default.
- W3116013614 hasConceptScore W3116013614C199639397 @default.
- W3116013614 hasConceptScore W3116013614C201645570 @default.
- W3116013614 hasConceptScore W3116013614C22029948 @default.
- W3116013614 hasConceptScore W3116013614C2776256026 @default.
- W3116013614 hasConceptScore W3116013614C2989005 @default.
- W3116013614 hasConceptScore W3116013614C33923547 @default.
- W3116013614 hasConceptScore W3116013614C41008148 @default.
- W3116013614 hasConceptScore W3116013614C50644808 @default.
- W3116013614 hasConceptScore W3116013614C509974204 @default.
- W3116013614 hasConceptScore W3116013614C71924100 @default.
- W3116013614 hasConceptScore W3116013614C75088862 @default.
- W3116013614 hasLocation W31160136141 @default.
- W3116013614 hasOpenAccess W3116013614 @default.
- W3116013614 hasPrimaryLocation W31160136141 @default.
- W3116013614 hasRelatedWork W1650996660 @default.
- W3116013614 hasRelatedWork W2050101289 @default.
- W3116013614 hasRelatedWork W2117141716 @default.
- W3116013614 hasRelatedWork W2144622085 @default.
- W3116013614 hasRelatedWork W2186742268 @default.
- W3116013614 hasRelatedWork W2487329160 @default.
- W3116013614 hasRelatedWork W2529481322 @default.
- W3116013614 hasRelatedWork W3029539430 @default.
- W3116013614 hasRelatedWork W3030063216 @default.
- W3116013614 hasRelatedWork W3146372209 @default.
- W3116013614 isParatext "false" @default.
- W3116013614 isRetracted "false" @default.
- W3116013614 magId "3116013614" @default.
- W3116013614 workType "article" @default.