Matches in SemOpenAlex for { <https://semopenalex.org/work/W3116058374> ?p ?o ?g. }
- W3116058374 endingPage "125910" @default.
- W3116058374 startingPage "125910" @default.
- W3116058374 abstract "Abstract Modeling the relationship between rainfall and runoff is an important issue in hydrology, but it is a complicated task because both the high levels of complexity in which both processes are embedded and the associated uncertainty, affect the forecasting. Neuro-fuzzy models have emerged as a useful approach, given the ability of neural networks to optimize parameters in a fuzzy system. In this work a Self-Identification Neuro-Fuzzy Inference Model (SINFIM) for modeling the relationship between rainfall and runoff on a Chilean watershed is proposed to reduce the uncertainty of selecting both the rainfall and runoff lags and the number of membership functions required in a fuzzy system. The data comes from the Diguillin river located in Nuble region and average daily runoff and average daily rainfall recorded from years 2000 to 2018, according to the Chilean directorate of water resources (DGA). In addition, we worked with the Colorado River basin, located in the Maule region, to validate the method developed. The experimental results showed a good adjustment using the last 3 years as validation set, further improvement was achieved using only the last year was used as validation test, obtaining 84% of R 2 and 0 , 91 Kling Gupta Efficiency, higher than other forecasting models such as Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial neural networks (ANN), and Long Short-Term Memory (LSTM) approach. In addition, Nash-Sutcliffe efficiency and percent BIAS indicate the method is a promising model. On the other hand, even better results were obtained in the validation basin, whose adjustment was 94% and an efficiency of 97%. Therefore, the proposed model is a solid alternative to forecast the runoff in a given watershed, obtaining good performance measurements, managing to predict both the low and peak runoff values from rainfall events, avoiding the requirement to determine a priori the lags of time series and the number of fuzzy rules." @default.
- W3116058374 created "2021-01-05" @default.
- W3116058374 creator A5043402158 @default.
- W3116058374 creator A5043769506 @default.
- W3116058374 creator A5048671602 @default.
- W3116058374 creator A5078170790 @default.
- W3116058374 creator A5088560375 @default.
- W3116058374 date "2021-03-01" @default.
- W3116058374 modified "2023-10-06" @default.
- W3116058374 title "A self-identification Neuro-Fuzzy inference framework for modeling rainfall-runoff in a Chilean watershed" @default.
- W3116058374 cites W1132038451 @default.
- W3116058374 cites W1505376064 @default.
- W3116058374 cites W1861932183 @default.
- W3116058374 cites W1991329666 @default.
- W3116058374 cites W1993647351 @default.
- W3116058374 cites W1994544962 @default.
- W3116058374 cites W2001320783 @default.
- W3116058374 cites W2019207321 @default.
- W3116058374 cites W2024659789 @default.
- W3116058374 cites W2058998445 @default.
- W3116058374 cites W2066996619 @default.
- W3116058374 cites W2081478993 @default.
- W3116058374 cites W2081823205 @default.
- W3116058374 cites W2085350428 @default.
- W3116058374 cites W2101533953 @default.
- W3116058374 cites W2289729126 @default.
- W3116058374 cites W2339498161 @default.
- W3116058374 cites W2460819813 @default.
- W3116058374 cites W2488205021 @default.
- W3116058374 cites W2564486588 @default.
- W3116058374 cites W2565001539 @default.
- W3116058374 cites W2739323338 @default.
- W3116058374 cites W2769285857 @default.
- W3116058374 cites W2787769814 @default.
- W3116058374 cites W2800819102 @default.
- W3116058374 cites W2805378549 @default.
- W3116058374 cites W2898791292 @default.
- W3116058374 cites W2900472058 @default.
- W3116058374 cites W2901543598 @default.
- W3116058374 cites W2908827354 @default.
- W3116058374 cites W2914442520 @default.
- W3116058374 cites W2922219977 @default.
- W3116058374 cites W2951276077 @default.
- W3116058374 cites W2951791429 @default.
- W3116058374 cites W2954257334 @default.
- W3116058374 cites W2954648193 @default.
- W3116058374 cites W2964253828 @default.
- W3116058374 cites W2969895489 @default.
- W3116058374 cites W2983489878 @default.
- W3116058374 cites W2999641182 @default.
- W3116058374 cites W3003576014 @default.
- W3116058374 cites W3017246359 @default.
- W3116058374 cites W3018770027 @default.
- W3116058374 cites W3033993412 @default.
- W3116058374 cites W3076896779 @default.
- W3116058374 cites W4213026484 @default.
- W3116058374 cites W789868019 @default.
- W3116058374 doi "https://doi.org/10.1016/j.jhydrol.2020.125910" @default.
- W3116058374 hasPublicationYear "2021" @default.
- W3116058374 type Work @default.
- W3116058374 sameAs 3116058374 @default.
- W3116058374 citedByCount "18" @default.
- W3116058374 countsByYear W31160583742021 @default.
- W3116058374 countsByYear W31160583742022 @default.
- W3116058374 countsByYear W31160583742023 @default.
- W3116058374 crossrefType "journal-article" @default.
- W3116058374 hasAuthorship W3116058374A5043402158 @default.
- W3116058374 hasAuthorship W3116058374A5043769506 @default.
- W3116058374 hasAuthorship W3116058374A5048671602 @default.
- W3116058374 hasAuthorship W3116058374A5078170790 @default.
- W3116058374 hasAuthorship W3116058374A5088560375 @default.
- W3116058374 hasConcept C116834253 @default.
- W3116058374 hasConcept C119857082 @default.
- W3116058374 hasConcept C127313418 @default.
- W3116058374 hasConcept C150547873 @default.
- W3116058374 hasConcept C154945302 @default.
- W3116058374 hasConcept C187320778 @default.
- W3116058374 hasConcept C18903297 @default.
- W3116058374 hasConcept C2776214188 @default.
- W3116058374 hasConcept C39432304 @default.
- W3116058374 hasConcept C41008148 @default.
- W3116058374 hasConcept C50477045 @default.
- W3116058374 hasConcept C76886044 @default.
- W3116058374 hasConcept C86803240 @default.
- W3116058374 hasConceptScore W3116058374C116834253 @default.
- W3116058374 hasConceptScore W3116058374C119857082 @default.
- W3116058374 hasConceptScore W3116058374C127313418 @default.
- W3116058374 hasConceptScore W3116058374C150547873 @default.
- W3116058374 hasConceptScore W3116058374C154945302 @default.
- W3116058374 hasConceptScore W3116058374C187320778 @default.
- W3116058374 hasConceptScore W3116058374C18903297 @default.
- W3116058374 hasConceptScore W3116058374C2776214188 @default.
- W3116058374 hasConceptScore W3116058374C39432304 @default.
- W3116058374 hasConceptScore W3116058374C41008148 @default.
- W3116058374 hasConceptScore W3116058374C50477045 @default.
- W3116058374 hasConceptScore W3116058374C76886044 @default.
- W3116058374 hasConceptScore W3116058374C86803240 @default.
- W3116058374 hasLocation W31160583741 @default.