Matches in SemOpenAlex for { <https://semopenalex.org/work/W3116100108> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3116100108 endingPage "280" @default.
- W3116100108 startingPage "271" @default.
- W3116100108 abstract "Three-dimensional (3D) reconstruction using structured light projection has the characteristics of non-contact, high precision, easy operation, and strong real-time performance. However, for actual measurement, projection modulated images are disturbed by electronic noise or other interference, which reduces the precision of the measurement system. To solve this problem, a 3D measurement algorithm of structured light based on deep learning is proposed. The end-to-end multi-convolution neural network model is designed to separately extract the coarse- and fine-layer features of a 3D image. The point-cloud model is obtained by nonlinear regression. The weighting coefficient loss function is introduced to the multi-convolution neural network, and the point-cloud data are continuously optimized to obtain the 3D reconstruction model. To verify the effectiveness of the method, image datasets of different 3D gypsum models were collected, trained, and tested using the above method. Experimental results show that the algorithm effectively eliminates external light environmental interference, avoids the influence of object shape, and achieves higher stability and precision. The proposed method is proved to be effective for regular objects." @default.
- W3116100108 created "2021-01-05" @default.
- W3116100108 creator A5019455072 @default.
- W3116100108 creator A5041090546 @default.
- W3116100108 creator A5048559814 @default.
- W3116100108 creator A5071261948 @default.
- W3116100108 creator A5072709319 @default.
- W3116100108 date "2021-01-01" @default.
- W3116100108 modified "2023-10-17" @default.
- W3116100108 title "Three-dimensional Measurement Using Structured Light Based on Deep Learning" @default.
- W3116100108 cites W2144794872 @default.
- W3116100108 cites W2210807110 @default.
- W3116100108 cites W2327449852 @default.
- W3116100108 cites W2787487367 @default.
- W3116100108 cites W2886591218 @default.
- W3116100108 cites W2912587965 @default.
- W3116100108 cites W2919115771 @default.
- W3116100108 cites W2921243522 @default.
- W3116100108 cites W3147001383 @default.
- W3116100108 doi "https://doi.org/10.32604/csse.2021.014181" @default.
- W3116100108 hasPublicationYear "2021" @default.
- W3116100108 type Work @default.
- W3116100108 sameAs 3116100108 @default.
- W3116100108 citedByCount "3" @default.
- W3116100108 countsByYear W31161001082021 @default.
- W3116100108 crossrefType "journal-article" @default.
- W3116100108 hasAuthorship W3116100108A5019455072 @default.
- W3116100108 hasAuthorship W3116100108A5041090546 @default.
- W3116100108 hasAuthorship W3116100108A5048559814 @default.
- W3116100108 hasAuthorship W3116100108A5071261948 @default.
- W3116100108 hasAuthorship W3116100108A5072709319 @default.
- W3116100108 hasBestOaLocation W31161001081 @default.
- W3116100108 hasConcept C11413529 @default.
- W3116100108 hasConcept C115961682 @default.
- W3116100108 hasConcept C126838900 @default.
- W3116100108 hasConcept C127162648 @default.
- W3116100108 hasConcept C131979681 @default.
- W3116100108 hasConcept C154945302 @default.
- W3116100108 hasConcept C183115368 @default.
- W3116100108 hasConcept C184577583 @default.
- W3116100108 hasConcept C193581530 @default.
- W3116100108 hasConcept C2779751349 @default.
- W3116100108 hasConcept C31258907 @default.
- W3116100108 hasConcept C31972630 @default.
- W3116100108 hasConcept C32022120 @default.
- W3116100108 hasConcept C41008148 @default.
- W3116100108 hasConcept C45347329 @default.
- W3116100108 hasConcept C50644808 @default.
- W3116100108 hasConcept C57493831 @default.
- W3116100108 hasConcept C71924100 @default.
- W3116100108 hasConcept C81363708 @default.
- W3116100108 hasConcept C99498987 @default.
- W3116100108 hasConceptScore W3116100108C11413529 @default.
- W3116100108 hasConceptScore W3116100108C115961682 @default.
- W3116100108 hasConceptScore W3116100108C126838900 @default.
- W3116100108 hasConceptScore W3116100108C127162648 @default.
- W3116100108 hasConceptScore W3116100108C131979681 @default.
- W3116100108 hasConceptScore W3116100108C154945302 @default.
- W3116100108 hasConceptScore W3116100108C183115368 @default.
- W3116100108 hasConceptScore W3116100108C184577583 @default.
- W3116100108 hasConceptScore W3116100108C193581530 @default.
- W3116100108 hasConceptScore W3116100108C2779751349 @default.
- W3116100108 hasConceptScore W3116100108C31258907 @default.
- W3116100108 hasConceptScore W3116100108C31972630 @default.
- W3116100108 hasConceptScore W3116100108C32022120 @default.
- W3116100108 hasConceptScore W3116100108C41008148 @default.
- W3116100108 hasConceptScore W3116100108C45347329 @default.
- W3116100108 hasConceptScore W3116100108C50644808 @default.
- W3116100108 hasConceptScore W3116100108C57493831 @default.
- W3116100108 hasConceptScore W3116100108C71924100 @default.
- W3116100108 hasConceptScore W3116100108C81363708 @default.
- W3116100108 hasConceptScore W3116100108C99498987 @default.
- W3116100108 hasIssue "1" @default.
- W3116100108 hasLocation W31161001081 @default.
- W3116100108 hasOpenAccess W3116100108 @default.
- W3116100108 hasPrimaryLocation W31161001081 @default.
- W3116100108 hasRelatedWork W2003485742 @default.
- W3116100108 hasRelatedWork W2007011109 @default.
- W3116100108 hasRelatedWork W2028265587 @default.
- W3116100108 hasRelatedWork W2043684885 @default.
- W3116100108 hasRelatedWork W2053335701 @default.
- W3116100108 hasRelatedWork W2355317610 @default.
- W3116100108 hasRelatedWork W2765506223 @default.
- W3116100108 hasRelatedWork W2934814663 @default.
- W3116100108 hasRelatedWork W2956016794 @default.
- W3116100108 hasRelatedWork W3044644045 @default.
- W3116100108 hasVolume "36" @default.
- W3116100108 isParatext "false" @default.
- W3116100108 isRetracted "false" @default.
- W3116100108 magId "3116100108" @default.
- W3116100108 workType "article" @default.