Matches in SemOpenAlex for { <https://semopenalex.org/work/W3116103134> ?p ?o ?g. }
- W3116103134 endingPage "6831" @default.
- W3116103134 startingPage "6820" @default.
- W3116103134 abstract "For health prognostic task, ever-increasing efforts have been focused on machine learning based methods, which are capable of yielding accurate remaining useful life (RUL) estimation for industrial equipment or components without exploring the degradation mechanism. A prerequisite ensuring the success of these methods depends on a wealth of run-to-failure data; however, run-to-failure data may be insufficient in practice. That is, conducting a substantial amount of destructive experiments not only is of high cost but also may cause catastrophic consequences. Out of this consideration, an enhanced RUL framework focusing on data self-generation is put forward for both noncyclic and cyclic degradation patterns for the first time. It is designed to enrich data from a data-driven way, generating realistic-like time-series to enhance current RUL methods. First, high-quality data generation is ensured through the proposed convolutional recurrent generative adversarial network, which adopts a two-channel fusion convolutional recurrent neural network. Next, a hierarchical framework is proposed to combine generated data into current RUL estimation methods. Finally, in this article the efficacy of the proposed method is verified through both noncyclic and cyclic degradation systems. With the enhanced RUL framework, an aero-engine system following noncyclic degradation has been tested using three typical RUL models. State-of-the-art RUL estimation results are achieved by enhancing capsule network with generated time-series. Specifically, estimation errors evaluated by the index score function have been reduced by 21.77$%$ and 32.67$%$ for the two employed operating conditions, respectively. Besides, the estimation error is reduced to zero for the lithium-ion battery system, which presents cyclic degradation." @default.
- W3116103134 created "2021-01-05" @default.
- W3116103134 creator A5028322534 @default.
- W3116103134 creator A5060020877 @default.
- W3116103134 creator A5060598893 @default.
- W3116103134 creator A5064860911 @default.
- W3116103134 creator A5078928085 @default.
- W3116103134 date "2021-10-01" @default.
- W3116103134 modified "2023-10-04" @default.
- W3116103134 title "Time-Series Regeneration With Convolutional Recurrent Generative Adversarial Network for Remaining Useful Life Estimation" @default.
- W3116103134 cites W2045186954 @default.
- W3116103134 cites W2581637843 @default.
- W3116103134 cites W2610635404 @default.
- W3116103134 cites W2617137613 @default.
- W3116103134 cites W2744067593 @default.
- W3116103134 cites W2773549135 @default.
- W3116103134 cites W2776458183 @default.
- W3116103134 cites W2790625295 @default.
- W3116103134 cites W2888518795 @default.
- W3116103134 cites W2888723145 @default.
- W3116103134 cites W2890435229 @default.
- W3116103134 cites W2899855224 @default.
- W3116103134 cites W2917169831 @default.
- W3116103134 cites W2919235887 @default.
- W3116103134 cites W2924382816 @default.
- W3116103134 cites W2943909972 @default.
- W3116103134 cites W2944290312 @default.
- W3116103134 cites W2955134049 @default.
- W3116103134 cites W2962770929 @default.
- W3116103134 cites W2963876951 @default.
- W3116103134 cites W2964024144 @default.
- W3116103134 cites W2966687987 @default.
- W3116103134 cites W3006585575 @default.
- W3116103134 cites W3096831136 @default.
- W3116103134 cites W3106295246 @default.
- W3116103134 doi "https://doi.org/10.1109/tii.2020.3046036" @default.
- W3116103134 hasPublicationYear "2021" @default.
- W3116103134 type Work @default.
- W3116103134 sameAs 3116103134 @default.
- W3116103134 citedByCount "41" @default.
- W3116103134 countsByYear W31161031342021 @default.
- W3116103134 countsByYear W31161031342022 @default.
- W3116103134 countsByYear W31161031342023 @default.
- W3116103134 crossrefType "journal-article" @default.
- W3116103134 hasAuthorship W3116103134A5028322534 @default.
- W3116103134 hasAuthorship W3116103134A5060020877 @default.
- W3116103134 hasAuthorship W3116103134A5060598893 @default.
- W3116103134 hasAuthorship W3116103134A5064860911 @default.
- W3116103134 hasAuthorship W3116103134A5078928085 @default.
- W3116103134 hasBestOaLocation W31161031342 @default.
- W3116103134 hasConcept C119857082 @default.
- W3116103134 hasConcept C124101348 @default.
- W3116103134 hasConcept C127413603 @default.
- W3116103134 hasConcept C147168706 @default.
- W3116103134 hasConcept C151406439 @default.
- W3116103134 hasConcept C154945302 @default.
- W3116103134 hasConcept C200601418 @default.
- W3116103134 hasConcept C201995342 @default.
- W3116103134 hasConcept C2779679103 @default.
- W3116103134 hasConcept C2780440489 @default.
- W3116103134 hasConcept C41008148 @default.
- W3116103134 hasConcept C50644808 @default.
- W3116103134 hasConcept C76155785 @default.
- W3116103134 hasConcept C81363708 @default.
- W3116103134 hasConcept C96250715 @default.
- W3116103134 hasConceptScore W3116103134C119857082 @default.
- W3116103134 hasConceptScore W3116103134C124101348 @default.
- W3116103134 hasConceptScore W3116103134C127413603 @default.
- W3116103134 hasConceptScore W3116103134C147168706 @default.
- W3116103134 hasConceptScore W3116103134C151406439 @default.
- W3116103134 hasConceptScore W3116103134C154945302 @default.
- W3116103134 hasConceptScore W3116103134C200601418 @default.
- W3116103134 hasConceptScore W3116103134C201995342 @default.
- W3116103134 hasConceptScore W3116103134C2779679103 @default.
- W3116103134 hasConceptScore W3116103134C2780440489 @default.
- W3116103134 hasConceptScore W3116103134C41008148 @default.
- W3116103134 hasConceptScore W3116103134C50644808 @default.
- W3116103134 hasConceptScore W3116103134C76155785 @default.
- W3116103134 hasConceptScore W3116103134C81363708 @default.
- W3116103134 hasConceptScore W3116103134C96250715 @default.
- W3116103134 hasFunder F4320321001 @default.
- W3116103134 hasIssue "10" @default.
- W3116103134 hasLocation W31161031341 @default.
- W3116103134 hasLocation W31161031342 @default.
- W3116103134 hasOpenAccess W3116103134 @default.
- W3116103134 hasPrimaryLocation W31161031341 @default.
- W3116103134 hasRelatedWork W2748454020 @default.
- W3116103134 hasRelatedWork W2941479427 @default.
- W3116103134 hasRelatedWork W2961085424 @default.
- W3116103134 hasRelatedWork W3021430260 @default.
- W3116103134 hasRelatedWork W3027997911 @default.
- W3116103134 hasRelatedWork W3119610945 @default.
- W3116103134 hasRelatedWork W4281386417 @default.
- W3116103134 hasRelatedWork W4287776258 @default.
- W3116103134 hasRelatedWork W4327831767 @default.
- W3116103134 hasRelatedWork W4385568401 @default.
- W3116103134 hasVolume "17" @default.
- W3116103134 isParatext "false" @default.