Matches in SemOpenAlex for { <https://semopenalex.org/work/W3116104192> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3116104192 endingPage "162" @default.
- W3116104192 startingPage "162" @default.
- W3116104192 abstract "One of the important tasks in a graph is to compute the similarity between two nodes; link-based similarity measures (in short, similarity measures) are well-known and conventional techniques for this task that exploit the relations between nodes (i.e., links) in the graph. Graph embedding methods (in short, embedding methods) convert nodes in a graph into vectors in a low-dimensional space by preserving social relations among nodes in the original graph. Instead of applying a similarity measure to the graph to compute the similarity between nodes a and b, we can consider the proximity between corresponding vectors of a and b obtained by an embedding method as the similarity between a and b. Although embedding methods have been analyzed in a wide range of machine learning tasks such as link prediction and node classification, they are not investigated in terms of similarity computation of nodes. In this paper, we investigate both effectiveness and efficiency of embedding methods in the task of similarity computation of nodes by comparing them with those of similarity measures. To the best of our knowledge, this is the first work that examines the application of embedding methods in this special task. Based on the results of our extensive experiments with five well-known and publicly available datasets, we found the following observations for embedding methods: (1) with all datasets, they show less effectiveness than similarity measures except for one dataset, (2) they underperform similarity measures with all datasets in terms of efficiency except for one dataset, (3) they have more parameters than similarity measures, thereby leading to a time-consuming parameter tuning process, (4) increasing the number of dimensions does not necessarily improve their effectiveness in computing the similarity of nodes." @default.
- W3116104192 created "2021-01-05" @default.
- W3116104192 creator A5034889378 @default.
- W3116104192 creator A5052464731 @default.
- W3116104192 date "2020-12-26" @default.
- W3116104192 modified "2023-09-26" @default.
- W3116104192 title "On Investigating Both Effectiveness and Efficiency of Embedding Methods in Task of Similarity Computation of Nodes in Graphs" @default.
- W3116104192 cites W1780567500 @default.
- W3116104192 cites W2039797165 @default.
- W3116104192 cites W2073699560 @default.
- W3116104192 cites W2191466049 @default.
- W3116104192 cites W2624657645 @default.
- W3116104192 cites W2779020697 @default.
- W3116104192 cites W2890058722 @default.
- W3116104192 cites W2891726376 @default.
- W3116104192 cites W2911030582 @default.
- W3116104192 cites W3006236094 @default.
- W3116104192 cites W3035761749 @default.
- W3116104192 cites W3082410713 @default.
- W3116104192 cites W3101413764 @default.
- W3116104192 cites W4210257598 @default.
- W3116104192 doi "https://doi.org/10.3390/app11010162" @default.
- W3116104192 hasPublicationYear "2020" @default.
- W3116104192 type Work @default.
- W3116104192 sameAs 3116104192 @default.
- W3116104192 citedByCount "3" @default.
- W3116104192 countsByYear W31161041922021 @default.
- W3116104192 countsByYear W31161041922022 @default.
- W3116104192 countsByYear W31161041922023 @default.
- W3116104192 crossrefType "journal-article" @default.
- W3116104192 hasAuthorship W3116104192A5034889378 @default.
- W3116104192 hasAuthorship W3116104192A5052464731 @default.
- W3116104192 hasBestOaLocation W31161041921 @default.
- W3116104192 hasConcept C103278499 @default.
- W3116104192 hasConcept C11413529 @default.
- W3116104192 hasConcept C115961682 @default.
- W3116104192 hasConcept C124101348 @default.
- W3116104192 hasConcept C127413603 @default.
- W3116104192 hasConcept C132525143 @default.
- W3116104192 hasConcept C154945302 @default.
- W3116104192 hasConcept C33923547 @default.
- W3116104192 hasConcept C41008148 @default.
- W3116104192 hasConcept C41608201 @default.
- W3116104192 hasConcept C45374587 @default.
- W3116104192 hasConcept C62611344 @default.
- W3116104192 hasConcept C66938386 @default.
- W3116104192 hasConcept C75564084 @default.
- W3116104192 hasConcept C80444323 @default.
- W3116104192 hasConceptScore W3116104192C103278499 @default.
- W3116104192 hasConceptScore W3116104192C11413529 @default.
- W3116104192 hasConceptScore W3116104192C115961682 @default.
- W3116104192 hasConceptScore W3116104192C124101348 @default.
- W3116104192 hasConceptScore W3116104192C127413603 @default.
- W3116104192 hasConceptScore W3116104192C132525143 @default.
- W3116104192 hasConceptScore W3116104192C154945302 @default.
- W3116104192 hasConceptScore W3116104192C33923547 @default.
- W3116104192 hasConceptScore W3116104192C41008148 @default.
- W3116104192 hasConceptScore W3116104192C41608201 @default.
- W3116104192 hasConceptScore W3116104192C45374587 @default.
- W3116104192 hasConceptScore W3116104192C62611344 @default.
- W3116104192 hasConceptScore W3116104192C66938386 @default.
- W3116104192 hasConceptScore W3116104192C75564084 @default.
- W3116104192 hasConceptScore W3116104192C80444323 @default.
- W3116104192 hasIssue "1" @default.
- W3116104192 hasLocation W31161041921 @default.
- W3116104192 hasLocation W31161041922 @default.
- W3116104192 hasOpenAccess W3116104192 @default.
- W3116104192 hasPrimaryLocation W31161041921 @default.
- W3116104192 hasRelatedWork W2893186803 @default.
- W3116104192 hasRelatedWork W2923818335 @default.
- W3116104192 hasRelatedWork W3035116611 @default.
- W3116104192 hasRelatedWork W3044354590 @default.
- W3116104192 hasRelatedWork W3149439221 @default.
- W3116104192 hasRelatedWork W4212923699 @default.
- W3116104192 hasRelatedWork W4213133066 @default.
- W3116104192 hasRelatedWork W4285120483 @default.
- W3116104192 hasRelatedWork W4287763734 @default.
- W3116104192 hasRelatedWork W4323323198 @default.
- W3116104192 hasVolume "11" @default.
- W3116104192 isParatext "false" @default.
- W3116104192 isRetracted "false" @default.
- W3116104192 magId "3116104192" @default.
- W3116104192 workType "article" @default.