Matches in SemOpenAlex for { <https://semopenalex.org/work/W3116152095> ?p ?o ?g. }
- W3116152095 endingPage "107792" @default.
- W3116152095 startingPage "107792" @default.
- W3116152095 abstract "Distributed Denial of Service (DDoS) attacks are still among the most dangerous attacks on the Internet. With the advance of methods for detecting and mitigating these attacks, crackers have improved their skills in creating new DDoS attack types with the aim of mimicking normal traffic behavior therefore becoming silently powerful. Among these advanced DDoS attack types, the so-called low-rate DoS attacks aim at keeping a low level of network traffic. In this paper, we study one of these techniques, called Reduction of Quality (RoQ) attack. To investigate the detection of this type of attack, we evaluate and compare the use of four machine learning algorithms: Multi-Layer Perceptron (MLP) neural network with backpropagation, K-Nearest Neighbors (K-NN), Support Vector Machine (SVM) and Multinomial Naive Bayes (MNB). We also propose an approach for detecting this kind of attack based on three methods: Fuzzy Logic (FL), MLP and Euclidean Distance (ED). We evaluate and compare the approach based on FL, MLP and ED to the above machine learning algorithms using both emulated and real traffic traces. We show that among the four Machine Learning algorithms, the best classification results are obtained with MLP, which, for emulated traffic, leads to a F1-score of 98.04% for attack traffic and 99.30% for legitimate traffic, while, for real traffic, it leads to a F1-score of 99.87% for attack traffic and 99.95% for legitimate traffic. Regarding the approach using FL, MLP and EC, for classification of emulated traffic, we obtained a F1-score of 98.80% for attack traffic and 99.60% for legitimate traffic, while, for real traffic, we obtained a F1-score of 100% for attack traffic and 100% for legitimate traffic. However, the better performance of the approach based on FL, MLP and ED is obtained at the cost of larger execution time, since MLP required 0.74 ms and 0.87 ms for classification of the emulated and real traffic datasets, respectively, where as the approach using FL, MLP and ED required 11’46” and 46’48” to classify the emulated and real traffic datasets, respectively." @default.
- W3116152095 created "2021-01-05" @default.
- W3116152095 creator A5028962895 @default.
- W3116152095 creator A5035058331 @default.
- W3116152095 creator A5058284019 @default.
- W3116152095 creator A5074892176 @default.
- W3116152095 date "2021-02-01" @default.
- W3116152095 modified "2023-10-15" @default.
- W3116152095 title "Detection of reduction-of-quality DDoS attacks using Fuzzy Logic and machine learning algorithms" @default.
- W3116152095 cites W1152223117 @default.
- W3116152095 cites W1966819490 @default.
- W3116152095 cites W1992176519 @default.
- W3116152095 cites W1995875735 @default.
- W3116152095 cites W2018992824 @default.
- W3116152095 cites W2020088120 @default.
- W3116152095 cites W2035536878 @default.
- W3116152095 cites W2042166926 @default.
- W3116152095 cites W2073886204 @default.
- W3116152095 cites W2084896955 @default.
- W3116152095 cites W2096118443 @default.
- W3116152095 cites W2104692292 @default.
- W3116152095 cites W2107164370 @default.
- W3116152095 cites W2119227347 @default.
- W3116152095 cites W2144266792 @default.
- W3116152095 cites W2148633389 @default.
- W3116152095 cites W2155883880 @default.
- W3116152095 cites W2162969618 @default.
- W3116152095 cites W2197538184 @default.
- W3116152095 cites W2299450638 @default.
- W3116152095 cites W2338694366 @default.
- W3116152095 cites W2593351722 @default.
- W3116152095 cites W2737097631 @default.
- W3116152095 cites W2743775608 @default.
- W3116152095 cites W2758836598 @default.
- W3116152095 cites W2765228046 @default.
- W3116152095 cites W2765558264 @default.
- W3116152095 cites W2790808644 @default.
- W3116152095 cites W2798501092 @default.
- W3116152095 cites W2809433313 @default.
- W3116152095 cites W2884204879 @default.
- W3116152095 cites W2884438011 @default.
- W3116152095 cites W2896625149 @default.
- W3116152095 cites W2909630611 @default.
- W3116152095 cites W2917037953 @default.
- W3116152095 cites W2921382838 @default.
- W3116152095 cites W2937711216 @default.
- W3116152095 cites W2942104252 @default.
- W3116152095 cites W2942653132 @default.
- W3116152095 cites W2962725067 @default.
- W3116152095 cites W2973603907 @default.
- W3116152095 cites W2979998718 @default.
- W3116152095 doi "https://doi.org/10.1016/j.comnet.2020.107792" @default.
- W3116152095 hasPublicationYear "2021" @default.
- W3116152095 type Work @default.
- W3116152095 sameAs 3116152095 @default.
- W3116152095 citedByCount "27" @default.
- W3116152095 countsByYear W31161520952020 @default.
- W3116152095 countsByYear W31161520952021 @default.
- W3116152095 countsByYear W31161520952022 @default.
- W3116152095 countsByYear W31161520952023 @default.
- W3116152095 crossrefType "journal-article" @default.
- W3116152095 hasAuthorship W3116152095A5028962895 @default.
- W3116152095 hasAuthorship W3116152095A5035058331 @default.
- W3116152095 hasAuthorship W3116152095A5058284019 @default.
- W3116152095 hasAuthorship W3116152095A5074892176 @default.
- W3116152095 hasBestOaLocation W31161520952 @default.
- W3116152095 hasConcept C110875604 @default.
- W3116152095 hasConcept C11413529 @default.
- W3116152095 hasConcept C119857082 @default.
- W3116152095 hasConcept C12267149 @default.
- W3116152095 hasConcept C136764020 @default.
- W3116152095 hasConcept C154945302 @default.
- W3116152095 hasConcept C38822068 @default.
- W3116152095 hasConcept C41008148 @default.
- W3116152095 hasConcept C50644808 @default.
- W3116152095 hasConcept C52001869 @default.
- W3116152095 hasConcept C60908668 @default.
- W3116152095 hasConceptScore W3116152095C110875604 @default.
- W3116152095 hasConceptScore W3116152095C11413529 @default.
- W3116152095 hasConceptScore W3116152095C119857082 @default.
- W3116152095 hasConceptScore W3116152095C12267149 @default.
- W3116152095 hasConceptScore W3116152095C136764020 @default.
- W3116152095 hasConceptScore W3116152095C154945302 @default.
- W3116152095 hasConceptScore W3116152095C38822068 @default.
- W3116152095 hasConceptScore W3116152095C41008148 @default.
- W3116152095 hasConceptScore W3116152095C50644808 @default.
- W3116152095 hasConceptScore W3116152095C52001869 @default.
- W3116152095 hasConceptScore W3116152095C60908668 @default.
- W3116152095 hasFunder F4320321091 @default.
- W3116152095 hasFunder F4320334779 @default.
- W3116152095 hasFunder F4320335322 @default.
- W3116152095 hasLocation W31161520951 @default.
- W3116152095 hasLocation W31161520952 @default.
- W3116152095 hasLocation W31161520953 @default.
- W3116152095 hasLocation W31161520954 @default.
- W3116152095 hasLocation W31161520955 @default.
- W3116152095 hasOpenAccess W3116152095 @default.
- W3116152095 hasPrimaryLocation W31161520951 @default.